
Natural Topology

Frank Waaldijkú

—with great support from Wim Couwenberg ‡

ú www.fwaaldijk.nl/mathematics.html
‡ http://members.chello.nl/∼w.couwenberg



Preface to the second edition

In the second edition, we have rectified some omissions and minor errors
from the first edition. Notably the composition of natural morphisms has
now been properly detailed, as well as the definition of (in)finite-product
spaces. The bibliography has been updated (but remains quite incomplete).
We changed the names ‘path morphism’ and ‘path space’ to ‘trail morphism’
and ‘trail space’, because the term ‘path space’ already has a well-used
meaning in general topology.

Also, we have strengthened the part of applied mathematics (the APPLIED

perspective). We give more detailed representations of complete metric
spaces, and show that natural morphisms are efficient and ubiquitous. We
link the theory of star-finite metric developments to efficient computing with
morphisms. We hope that this second edition thus provides a unified frame-
work for a smooth transition from theoretical (constructive) topology to ap-
plied mathematics.

For better readability we have changed the typography. The Computer Mod-
ern fonts have been replaced by the Arev Sans fonts. This was no small
operation (since most of the symbol-with-sub/superscript configurations had
to be redesigned) but worthwhile, we believe. It would be nice if more fonts
become available for LATEX, the choice at this moment is still very limited.
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Summary

We develop a simple framework called ‘natural topology’, which can serve
as a theoretical and applicable basis for dealing with real-world phenom-
ena. Natural topology is tailored to make pointwise and pointfree notions go
together naturally. As a constructive theory in BISH, it gives a classical math-
ematician a faithful idea of important concepts and results in intuitionism.

Natural topology is well-suited for practical and computational purposes.
We give several examples relevant for applied mathematics, such as the
decision-support system Hawk-Eye, and various real-number representations.

We compare classical mathematics (CLASS), intuitionistic mathematics (INT),
recursive mathematics (RUSS), Bishop-style mathematics (BISH) and formal
topology, aiming to reduce the mutual differences to their essence. To do so,
our mathematical foundation must be precise and simple. There are links
with physics, regarding the topological character of our physical universe.

Any natural space is isomorphic to a quotient space of Baire space, which
therefore is universal. We develop an elegant and concise ‘genetic induction’
scheme, and prove its equivalence on natural spaces to a formal-topological
induction style. The inductive Heine-Borel property holds for ‘compact’ or
‘fanlike’ natural subspaces, including the real interval [α, β]. Inductive mor-
phisms respect this Heine-Borel property, inversely. This partly solves the
continuous-function problem for BISH, yet pointwise problems persist in the
absence of Brouwer’s Thesis.

By inductivizing the definitions, a direct correspondence with INT is obtained
which allows for a translation of many intuitionistic results into BISH. We
thus prove a constructive star-finitary metrization theorem which parallels
the classical metrization theorem for strongly paracompact spaces. We also
obtain non-metrizable Silva spaces, in infinite-dimensional topology. Natural
topology gives a solid basis, we think, for further constructive study of topo-
logical lattice theory, algebraic topology and infinite-dimensional topology.

The final section reconsiders the question of which mathematics to choose
for physics. Compactness issues also play a role here, since the question
‘can Nature produce a non-recursive sequence?’ finds a negative answer
in CTphys . CTphys , if true, would seem at first glance to point to RUSS as
the mathematics of choice for physics. To discuss this issue, we wax more
philosophical. We also present a simple model of INT in RUSS, in the two-
player game LIfE.
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CHAPTER ZERO

Introduction

In this chapter we introduce the subject of natural topology, starting
from the natural sciences. The basis for observations and measure-
ments in science seems inescapably to be one of ever-increasing
refinement. We do not obtain finished real numbers, but only finite
approximations of ever-increasing exactitude.

This type of ‘constructive’ considerations has become increasingly
important with the advent of the computer. The translation of theo-
retical classical mathematics to applied mathematics is often prob-
lematic. Constructive mathematics incorporates finite approxima-
tions in its theory, thus providing a smooth theoretical framework
for applied mathematics.

Also important: natural topology gives a mathematical model of
the real-world topology that we encounter when measuring. This
we believe to be relevant for physics.

Last but not least, we believe natural topology to be relevant for the
foundations of (constructive) mathematics.
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0.0 INTRODUCTION

0.0.0 Background and motivation of this paper For a historical background
and motivation of this paper, we refer the reader to the appendix, section
A.1. Section A.2 of the appendix holds some nice mathematical examples
which should help clarify our approach. For readability, most proofs are given
in the appendix in section A.3. Constructive axioms and concepts are given
and discussed in section A.4, additional remarks can be found in section A.5,
and the bibliography is in section A.6.

Summarizing: don’t skip the appendix!

0.0.1 Introduction to natural topology Imagine an engineer taking measure-
ments of some natural physical phenomenon. With ever-increasing precision
steps she arrives at ever more precise approximations of certain real num-
bers. In this process she may come across two measurements which at the
outset could still indicate the same real number, yet, when more precision is
attained, are seen to be really apart.

The interesting thing about this description lies in the hidden meaning of
the word ‘real number’. Usually this meaning is taken for granted, with an
intuitive image of the real line as ‘foundation’. But in mathematics —the
precision language of science— the real numbers are commonly defined as
equivalence classes of Cauchy-sequences of rational numbers. Then, later,
a metric topology can be defined where the basic open sets are the open
rational intervals. This topology is optional, as a system the real numbers
are usually viewed to exist ‘on their own’.

Compared to the situation that the engineer finds herself in, the above math-
ematical approach is exactly the other way round. For the engineer first and
only encounters a finite number of shrinking rational intervals (the measure-
ments), and then regards these finite measurements as an approximation to
a real number (getting better all the time if one can apply more and more
precision).

From a topological view, the engineer comes across the topology of rational
intervals before ever seeing a real number. It turns out that many prob-
lems of translating theoretical mathematics into practical applications hinge
around this reversal of approach to real numbers and their natural topology.
So let us go into this matter a bit more.
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0.0.2 Classical mathematics In theoretical mathematics, theorems about the
real numbers are often proved in a way which ‘disregards’ the topology. For
instance, consider a theorem asserting ∀∈R∃y∈R[D(, y)]. Consider a
reasonably algorithmic proof even which has the following form: for < 0 do
A and for ≥ 0 do B. Looking at it from a topological standpoint, one could
say such a proof is ‘discontinuous’ in 0. When an engineer looks to imple-
ment the theorem say on a computer fed by real-time data, the problem
arises immediately that for real-time data  the distinction < 0 or ≥ 0
cannot always be made. On data hovering around 0, the ‘method’ supplied
by the theoretical proof might lead to a non-terminating program.

0.0.3 Constructive mathematics These types of problems have partly moti-
vated the development of constructive mathematics , especially of course
since the advent of the computer. Constructive mathematics is a branch of
mathematics in which theorems are proved in such a way that the translation
of the proof to a working program should be immediate (however in general
no claim to efficiency is made).

The surprise for mathematicians and engineers alike is that many theorems
from ‘classical’ mathematics can be shown to be ‘non-constructive’, meaning
that they can never be translated into a working program. In essence, then,
these theorems are simply untrue in constructive mathematics. This ques-
tioning of hitherto ‘solid’ theory has led to quite some reluctance amongst
theoretical mathematicians to adopt a ‘constructive’ outlook.

The downside of this reluctance has been that applicability issues are left to
ad-hoc solutioneering, whereas a clearer and more efficient mathematical
approach is possible. We hope to give part of such an approach in this paper.
Amongst other results, this approach yields a simple topological foundation
to some practical issues arising from different representation methods of
the real numbers (e.g. Cauchy-sequences, decimal notation floating points,
binary notation floating points, interval arithmetic and others).

0.0.4 Our framework: pointwise as well as pointfree The topological frame-
work which we present should also be of theoretical interest, both classi-
cally and constructively. For instance, in our (classically valid) framework we
present a pathwise connected metric space, which is not arcwise connected.
(How this can be? Read and see.) For constructive mathematics, the devel-
opment of topology has been tackled in different ways. Our approach seems
a simple and elegant alternative to the avenues explored so far.
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For large parts of mathematics the concept of ‘points’ seems natural and
elegant. Therefore we focus on this concept. Still, we will show that points
arise naturally from ’pointfree’ topological constructions. We believe that our
‘pointfree’ machinery is simple, compared to the framework of formal topol-
ogy and pointfree topology. This simplicity might look restrictive in the sense
that our machinery leads us only a little further than ‘separable topological
T1-spaces’. On the other hand, that is a vast class of spaces. Bishop (the
founder of BISH) even went as far as saying that non-separable spaces are
a form of pseudogenerality which is to be avoided in constructive math. We
hope that by keeping things simple, we can explain the relevance of con-
structive topology to the ‘working class’ classical/applied mathematician.

From the foundational perspective, another advantage of keeping things sim-
ple is that axiomatic and conceptual assumptions become clear. These as-
sumptions also reflect on physics. As an example we like to state already
here that topological compactness of the unit real interval [0,1] turns out
to be an independent axiom. There is a perfectly acceptable and beautiful
model of the real numbers in which [0,1] is not topologically compact (only
very trivial spaces are topologically compact in this model). To our knowl-
edge no one has put forth a convincing argument why reality is not better
modeled by this non-compact real model than by the ‘standard’ real model.
But the present monograph gives a handhold for the discussion, we believe.
In fact we hope that the monograph can serve the foundations of (construc-
tive) mathematics in general.

Topological spaces always exist in conjunction with continuous mappings be-
tween them. We define different types of such mappings, to deal with lattice
and tree structures which arise naturally from topological investigations. We
think that our choices are suited for both theoretical and practical (computa-
tional) purposes.

In order to achieve a constructively valid framework, our logic and our proof
methods are constructive. This will not impact greatly on our presentation,
which seems quite natural if one keeps in mind that all results should be
implementable on a computer. For a precise axiomatic account the reader
can read the appendix A.4.

0.0.5 Whom it may concern In the light of the above, we think this paper is of
interest from four different perspectives: applied mathematics & computer
science (APPLIED), general mathematics (GENERAL), constructive foundations
of mathematics (CONSTRUCTIVE) and foundations of physics (PHYSICS).



CHAPTER ONE

Natural Topology

In this chapter we give the definition of ‘natural space’, starting with
the topology and obtaining the points in the process. The natural
real numbers are a prime example. Natural morphisms between
natural spaces are defined, and shown to be continuous. Con-
versely, continuous functions going to ‘basic neighborhood spaces’
can be represented by morphisms. Still, for CLASS the equivalence
structure determined by isomorphisms is finer than the equiva-
lence structure determined by homeomorphisms. Natural topology
is seen to resemble intuitionistic topology.

Natural Baire space and Cantor space are defined. We show that
the class of natural spaces is large, containing (representations of)
every complete separable metric space.

From the APPLIED perspective we discuss the natural topology of bi-
nary, ternary and decimal reals. We also look at the well-known
Cantor function, and examine the line-calling decision-support sys-
tem Hawk-Eye which is used in professional tennis.



Basic definitions and the natural reals 10

1.0 BASIC DEFINITIONS AND THE NATURAL REALS

1.0.0 Topology first, points later From the previous introduction our mathe-
matical challenge becomes clear. Namely how to define the real numbers -
and more generally a (separable) topological space – starting with the topol-
ogy, and obtaining the points of the topological space in the process.

1.0.1 Dots and points We turn to an intuitive picture of the situation that our
previously defined engineer finds herself in. This picture briefly runs as fol-
lows. Our engineer in fact encounters only ‘dots’ or ‘specks’, which for the
sake of our mathematical argument we think of as being arbitrarily refin-
able. Two ‘dots’ defined by different processes might at some approximation
be seen to definitely lie apart, in which case they represent different (real)
numbers. But if the dots are still overlapping at some approximative state,
then our engineer cannot tell whether the dots represent different numbers
or not.

So the information of dots lying apart gives more tractability than the infor-
mation of dots overlapping. The first situation allows a definite conclusion at
a finite state (two different real numbers) whereas the second situation still
hovers around two possible conclusions. Therefore we will define our spaces
using the apartness properties of dots, more than overlap properties.

In the above intuitive picture, the dots play the central role, and the real
numbers arise only as an idealization. Namely, a real number arises as the
intersection of an infinite ‘ever-shrinking’ sequence of dots. ‘Ever-shrinking’
can be defined in terms of the apartness of dots, but this turns out to be less
convenient than introducing a second notion regarding dots, namely: ‘being
a refinement of’, which behaves like a partial order � on the countable col-
lection of dots. In accordance with our intuitive picture, when �b, then 

is a ‘refinement’ of b and represents a ‘smaller’ dot, contained in b.1

1.0.2 Pre-natural spaces From the previous introduction we distill the basic
mathematical setting: we have a countable set V of basic dots of a natural

1Still, we should keep in mind that basic dots arise in the course of a process of measuring
points. We will see that when creating pointwise mappings -or in other words, when looking
at transformations- it can be meaningful to distinguish between the unit interval [0,1] as a
refinement of [0,2] and the ‘same’ unit interval [0,1] as a refinement of [−1,1].
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topological space (V , T# ) which we build with a number of definitions in this
section. Along with the definitions we give some explanations and examples.

DEFINITION: A pre-natural space is a triple (V, #, � ) where V is a countable2

set of basic dots and # and � are binary relations on V , satisfying the
properties following below. Here # is a pre-apartness relation (expressing
that two dots lie apart) and � is a refinement relation (expressing that one
dot is a refinement of the other, and therefore contained in the other).

(i) The relations # and � are decidable on the basic dots.3

(ii) For all , b∈V : #b (‘ is apart from b’) if and only if b#. Pre-
apartness is symmetric.

(iii) For all ∈V : ¬(#). Pre-apartness is antireflexive.

(iv) For all , b, c∈V : if �b (‘ refines b’) then c#b implies c#. Pre-
apartness is � -monotone.

(v) The relation � is a partial order, so for all , b, c∈V : � and if �b�c
then �c, and if �b� then  = b. Refinement is reflexive, transitive
and antisymmetric.

For basic dots we write  ≈ b (‘ touches b’) iff ¬(#b). Then ≈ is the
decidable complement of # . (END OF DEFINITION)

REMARK: For the motivating example of the real numbers, the basic dots
can be thought of as the rational intervals.4 Two rational intervals [, b] and
[c, d] are said to be apart , notation [, b]#[c, d], iff either d<  or b< c.
[, b] refines [c, d], notation [, b]�[c, d], iff c≤  and b≤ d. (Also see
1.0.8 and appendix A.5.0) (END OF REMARK)

1.0.3 Points arise from shrinking sequences Of course one idea is to turn to
infinite shrinking sequences (of dots), in order to arrive at points. Looking at
our example of rational intervals we see that we need to impose a ‘sufficient

2A set S is countable iff there is a bijection from N to S, and enumerable iff there is a
surjection from N to S.

3This means we have a finite procedure to decide the relation. Consider e.g. two rational
intervals [, b] and [c, d], we can decide whether these intervals lie apart or not. We can
also decide whether one is a refinement of the other, which in this case is the same as being
contained in the other, or not.

4Using open or closed intervals both yields the same structure, but working with closed
intervals fits the intuitive picture better.
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shrinking’ condition, otherwise the infinite intersection may contain a whole
interval rather than just a point. For an infinite shrinking sequence α =
r0, r1, . . . of closed rational intervals (rm+1� rm for all indices m) to represent
a real number, α must ‘choose’ between each pair of apart rational intervals
[, b]#[c, d]. By which we mean: for each such pair [, b]#[c, d], there is
an index m such that rm#[, b] or rm#[c, d]. (We leave it to the reader to
verify that this is indeed equivalent to saying that the infinite intersection of
(rm)m∈N contains just one real number.).

The elegance of this approach is that for an infinite shrinking sequence of
dots, the property of ‘being a point’ can be expressed by an enumerable
condition of pre-apartness. There is no need to talk of ‘convergence rate’ or
‘Cauchy-sequence’, which both presuppose some metric concept. To define
points, we can simply study the real numbers and transfer certain of their
nice properties to our general setting.

DEFINITION: A point on the pre-natural space (V, #, � ) is an infinite se-
quence p=p0, p1, p2 . . . of elements of V that satisfies:

(i) for all indices n we have: pn+1�pn and there is an index m with pm≺pn.

(ii) If , b∈V and #b then there is an index m such that pm# or pm#b.

Note that any infinite subsequence of p is itself a point (equivalent to p in
the natural sense to be defined). The set of all points on (V, #, � ) is denoted
by V . (END OF DEFINITION)

Since points are infinite sequences, the set V is generally not enumerable
(but all points in V could be equivalent).

1.0.4 Apartness on points The points of our pre-natural space (V, #, � ) are de-
fined, but clearly we obtain many points which are in some sense equivalent
(see our example of rational intervals). The constructive approach to an
equivalence relation is to look at its strong opposite, namely an apartness

(see below for the standard properties of an apartness).
Therefore it is convenient to extend # to points in V , and also define when
points ‘belong’ to dots, in the obvious way:

DEFINITION: For p = p0, p1, . . . , q = q0, q1, . . . ∈V and ∈V :

(i) #p and p# iff #pm for some index m.

(ii) p#q iff pn#qn for some index n.
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(iii) p≡q iff ¬(p#q).

(iv) p≺ iff pm≺ for some index m. This relation is also referred to as ‘
is a beginning of p’ or ‘p begins with ’ or ‘p belongs to ’.

(v) We write [] for the set of all points p such that  is a beginning of p.
Notice that [] is not necessarily closed under ≡ . We write [[]] for the
≡ -closure of [].

(END OF DEFINITION)

In terms of complexity, # is a 10-property, whereas ≡ is a 10-property. This
reflects that apartness of two sequences of dots can be seen at some finite
stage, but equivalence of two such sequences is an infinite property. There-
fore apartness is better suited for constructive and computational purposes
(also see appendix A.5.1).

To see that # is indeed an apartness (and that therefore ≡ is an equivalence
relation), notice that for all p = p0, p1 . . . and q = q0, q1 . . . and r = r0, r1 . . .

in V :

(1) ¬(p#p) ( anti-reflexivity ).

(2) p#q implies q#p ( symmetry )

(3) if p#q then p#r or q#r ( co-transitivity ). (If p#q then there is n with
pn#qn , therefore by definition of points (1.0.3(ii)) we can find an index
m with: rm#pm or rm#qm , so p#r or q#r).

1.0.5 Apartness topology is the natural topology There is a natural topology
on the set of points V of a pre-natural space (V, #, � ). This topology is ex-
pressed in terms of apartness and refinement, we call it the natural topology

and also the apartness topology 5, denoted as T# . T# is the collection of
# -open subsets of V where # -open is defined thus:

DEFINITION: A set U⊆V is # -open iff for each ∈U and each y∈V we can
determine at least one of the following two conditions (they need not be
mutually exclusive):

(1) y#

(2) there is an index m such that [ym] = {z∈V |z≺ym} is contained in U.

5See appendix A.1.3 for some historical remarks.
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When the context is clear we simply say ‘open’ instead of ‘# -open’. (END OF

DEFINITION)

It follows from this definition that an open set is saturated for the equivalence
on points (meaning if U is open, ∈U and ≡y then y∈U). We leave this to
the reader for easy verification. (This also means that we could replace [ym]

with [[ym]] in (2) above, but in practice this leads to slightly more elaborate
proofs). Let us first show that the above indeed defines a topology on V :

Top1 Clearly the empty set ∅ and the entire set V are open.

Top2 Let U,W⊆V be open sets, we wish to show that U∩W is open. For this
suppose ∈U∩W and y∈V , we must show: y# or there is an index m

such that all points beginning with ym are contained in U∩W . However,
since U is open, we can choose case U(1) y# or case U(2) there is
an index s such that all points beginning with ys are contained in U.
Since W is open, we can also choose case W(1) y# or case W(2)

there is an index t such that all points beginning with yt are contained
in W . Combining these two choices, we find: y# or for m =mx(s, t)
all points beginning with ym are contained in U∩W .

Top3 Suppose that U⊆V is a set and each ∈U has an open neighbourhood
W such that ∈W⊆U. We must show that U is open (this is the
constructive formulation of ‘an arbitrary union of open sets is open’).
For this suppose ∈U and y∈V , we must show: y# or there is an
index m such that all points beginning with ym are contained in U.
Determine an open neighbourhood W such that ∈W⊆U. Since W is
open, we find: y# or there is an index m such that all points beginning
with ym are contained in W and therefore in U. We see that U is open.

1.0.6 Natural spaces All the ingredients for our main definition have been pre-
pared. Notice that we did not yet stipulate that each dot should at least
contain a point. Also it turns out to be necessary to have a maximal dot,
which contains the entire space. These then become the final requirements:

DEFINITION: Let (V, #, � ) be a pre-natural space, with corresponding set of
points V and apartness topology T# . An element d of V is called a maximal

dot iff �d for all  ∈ V . Notice that V has at most one maximal dot6, which

6Actually, it also makes sense to reverse the � -notation, and to consider our maximal dot
as being the minimal element, which carries the least information. Then each refinement is
‘larger’ because it carries more information than its predecessor.
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if existent is denoted ©
V or simply © . (V , T# ) is a natural space iff V has

a maximal dot and every ∈V contains a point. (END OF DEFINITION)

LEMMA: Let (V , T# ) be a natural space, with corresponding pre-natural space
(V, #, � ). Let ∈V be a basic dot. Then the set #([]) = {z∈V |z#} is
open in the natural topology.

COROLLARY: For  in (V , T# ), the set {∈V |#} is open in the natural
topology. So a set containing one point (up to equivalence) is closed, showing
that every natural space is T1 .

PROOF: let  be in #([]), and let y be in V . We need to show one of the
following two conditions:

(1) y#

(2) there is an index m such that [ym] = {z∈V |z≺ym} is contained in
#([]).

Since #, by definition there is an index s with s#. Therefore by defini-
tion of points there is an index m with ym#s or ym#. In the first case we
find that y#, in the second we find that [ym] is contained in #([]). For the
corollary, notice that {∈V |#} =

⋃

n∈N{∈V |#n}. (END OF PROOF)

REMARK: One might think that the lemma shows that in our approach the
dots correspond to ‘closed’ subsets in the topology, but this is not always
the case. We can also construct the real numbers as a natural space where
the basic dots correspond to open intervals, see the alternative definition in
paragraph 1.0.8. In this monograph, different representations of the ‘same’
natural space are studied also to arrive at computational efficiency (for ex-
ample, consider floating-point versus interval arithmetic). This is relevant for
the APPLIED perspective. (END OF REMARK)

1.0.7 Other ways to define natural spaces There are other ways (than the
definitions above) to introduce points and spaces. One such way is to simply
look at sequences of basic dots which are not necessarily successive refine-
ments, but which all touch (so none are apart) and which fulfill the same
condition of ‘choosing between each pair of apart dots’. However, the result-
ing point-space can be easily transformed in an ‘equivalent’ space in which
the points are again given by a refinement condition.

To see this, note that we can always move to new basic dots which are made
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up of a finite sequence 0, . . . , n of ‘old’ basic dots where  touches j
for all , j≤ n. Then a new dot b=b0, . . . , bm refines a new dot =0, . . . , n
whenever m≥ n and b= for all ≤ n.

The above transition from basic dots to finite sequences of basic dots plays a
part in our discussion of continuous mappings later on. Two different points
may start out differently yet pass through the same basic dot at some later
point in time. As we said earlier, we think that for a nice theory of such
mappings one should be able to distinguish between [0,1] as a refine-
ment of [0,2] and [0,1] as a refinement of [−1,1]. This can be easily
realized by looking at the different finite sequences =([0,2], [0,1]) and
b=([−1,1], [0,1]).

1.0.8 The natural real numbers After using the rational intervals as a running
example for V , we can now formally define the natural real numbers Rnt as
follows:

DEFINITION: Let RQ =D {[p, q]|p, q∈Q|p < q}∪{(−∞,∞)}. For two rational
intervals [, b] and [c, d] put [, b]#R[c, d] iff (d<  or b< c) and put
[, b] �R [c, d] iff (c ≤  and b ≤ d). The maximal dot ©

R is obviously
(−∞,∞). The points on the pre-natural space (RQ , #R , �R ) are called the
natural real numbers (also ‘natural reals’), the set of natural reals is de-
noted by Rnt . The corresponding natural topology is denoted by T#R . (Also
see the remark later in this paragraph).

Next, let [0,1]R =D {[p, q]|p, q∈Q|0≤ p< q≤ 1}, then ([0,1]R , #R , �R ) is a
pre-natural space with corresponding natural space ([0,1]nt, T#R ) and max-
imal dot ©[0,1]=[0,1]. (END OF DEFINITION)

THEOREM: (Rnt, T#R ) is a natural space which is homeomorphic to the topo-
logical space of the real numbers R equipped with the usual metric topology.

PROOF:

We prove this in the appendix (A.3.0), it is not difficult. Notice that by ‘home-
omorphism’ we mean the usual definition (a continuous function from one
space to the other which has a continuous inverse; ‘continuous’ meaning
that the inverse image of an open set is itself open). Also notice that we
are a bit free here, since for a classical theorist we should first move to the
quotient space of equivalence classes. (END OF PROOF)
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REMARK: An interesting alternative definition of R as a natural space is ob-
tained by changing just very little in the definition. For two rational inter-
vals [, b] and [c, d] in RQ put [, b] #◦R[c, d] iff (d≤  or b≤ c) and put
[, b]�◦R[c, d] iff (c <  and b< d). Then(RQ , #

◦
R , �

◦
R) is a pre-natural space,

and the corresponding natural space is again homeomorphic to R. But one
sees that the basic dots [, b] now correspond to the open real intervals
(, b). 7 (RQ , #

◦
R , �

◦
R) corresponds to the definition of the formal reals in for-

mal topology (we believe). However, we think compactness is less wieldy
in (RQ , #

◦
R , �

◦
R), which is one reason to stick with (RQ , #R , �R ).

8 (END OF

REMARK)

From a classical point of view the theorem above however also begs the
question: ‘If what we get are the same old real numbers, then what did
we gain?’. To answer this question we turn to a final important element of
natural spaces: morphisms between them.

1.1 NATURAL MORPHISMS

1.1.0 Why study morphisms? Insight into natural spaces is gleaned from map-
pings from one space to another which are structure-preserving to some ex-
tent. We define different types of such mappings, calling all of them unimag-
inatively natural morphisms. Each natural morphism defines a continuous
function with respect to the natural topology. More surprising, from a clas-
sical point of view, is that the structure of natural morphisms gives a finer
distinction between natural spaces, than the structure of continuous func-
tions between their corresponding topological spaces. This means that the
class of natural morphisms forms an interesting subclass of the class of con-
tinuous functions. In 1.2.2 we present a nice condition on a natural space
(V , T# ), which when satisfied guarantees in CLASS, INT and RUSS that a con-
tinuous function from another natural space to (V , T# ) can be represented
by a natural morphism, see 1.2.2.

We will show that there is no isomorphism between the natural real numbers
and the ‘natural decimal real numbers’, whereas classically these spaces are

7It would therefore be better to denote the basic dots as open rational intervals (, b)
under this definition.

8The two spaces are isomorphic in a sense yet to be defined.
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topologically identical.9 Another interesting result: the space of ‘natural dec-
imal real numbers’ turns out to be ‘pathwisent connected’ but not ‘arcwisent

connected’. This is fact the translation of an intuitionistic result. Similarly,
many intuitionistic results can be translated to the setting of natural spaces
and natural morphisms, providing an alternative classical way to view impor-
tant parts of intuitionism.

1.1.1 Different representations of the ‘same’ space In topology, homeomor-
phisms play a central role. When two spaces are homeomorphic, one can see
them as two different representations of the ‘same’ topological space. Yet
there is often an intrinsic interest in these different representations. Con-
sider for example R and R+. These are two homeomorphic spaces ((R,+)
and (R+, ·) are even isomorphic topological groups), but we often have use
for one or the other representation, depending on context.

In order to build an elegant theory and prove its correctness, we will need
to look at many different representations of ‘same’ natural spaces. As can
be expected, in natural topology ‘sameness’ is induced by a special class
of natural morphisms called ‘isomorphisms’. Every isomorphism induces a
homeomorphism, but the converse is not true in CLASS (see the above ex-
ample of the natural decimal real numbers).

1.1.2 Natural morphisms 1: refinement morphisms We will distinguish two
types of natural morphisms: refinement morphisms (denoted � -morphisms)
and trail morphisms (denoted o -morphisms). The definition of refinement
morphisms should pose no surprises in the light of our previous narrative.

When going from one natural space to another, a refinement morphism
sends basic dots to basic dots, respecting the apartness and refinement
relations, in such a way that ‘points go to points’. This means that any
� -morphism is an order morphism with respect to the partial order � .10

DEFINITION: Let (V ,T#1 ) and (W ,T#2 ) be two natural spaces, with correspond-
ing pre-natural spaces (V, #1 , �1) and (W, #2 , �2). Let ƒ be a function from V

to W. Then ƒ is called a refinement morphism (notation: � -morphism) from
(V ,T#1 ) to (W ,T#2 ) iff for all , b ∈ V and all p = p0, p1, . . . ∈V:

(i) ƒ ()#2 ƒ (b) implies #1b.

9This is interesting for representation issues in computer science.
10Not all order morphisms are refinement morphisms though. Our notation ‘ � -morphism’

can be slightly misleading in this respect.
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(ii) �1b implies ƒ ()�2 ƒ (b)

(iii) ƒ (p) =
D
ƒ (p0), ƒ (p1), . . . is in W.

As indicated in (iii) above we will write ƒ also for the induced function from V
to W. The reader may check that (ii) follows from (iii). By (i), a � -morphism
ƒ from (V ,T#1 ) to (W ,T#2 ) respects the apartness/equivalence relations on
points, since ƒ (p)#2 ƒ (q) implies p#1q for p, q∈V. (END OF DEFINITION)

THEOREM: Let ƒ be a � -morphism from (V ,T#1 ) to (W ,T#2 ). Then ƒ is contin-
uous.

PROOF: Let U be open in (W ,T#2 ). We must show that T= ƒ−1(U) is open in
(V ,T#1 ). For this let ∈T, and y∈V. We must show: #1y or there is an
index m such that [ym]⊆T. Since ƒ () is in U, we can choose case U(1)

ƒ ()#2 ƒ (y), then #1y by (i) above; or case U(2) there is an index m such
that [ƒ (y)m]⊆U, then by (iii) and (ii) above: [ym]⊆T. (END OF PROOF)

1.1.3 Refinement morphisms are computationally efficient The concept of
� -morphisms is simple. They have the added advantage of computational
efficiency. With a suited ‘lean’ representation σR of the natural real numbers,
� -morphisms from σR to σR resemble interval arithmetic, and match the
recommendations in [BauKav2009] for efficient exact real arithmetic.

More generally, a continuous function between two ‘lean’ natural spaces can
usually be represented by a � -morphism (see thm. 1.2.2 and prp. 2.3.2).
Therefore we are interested, already from the APPLIED perspective, in con-
structing ‘lean’ representations of natural spaces (called ‘spraids’). Spraids
turn out to be fundamental for the GENERAL, CONSTRUCTIVE and PHYSICS per-
spectives as well. To understand the complexities and to prove our frame-
work correct, we need to define trail morphisms and trail spaces.

1.1.4 Natural morphisms 2: trail morphisms For the most general setting of
natural spaces and pointwise topology, � -morphisms turn out to be too re-
strictive. This explains our use for the more involved concept of ‘trail mor-
phism’ (denoted o -morphism). Trail morphisms play a necessary role in es-
tablishing nice properties of natural spaces. But once these properties have
been established, we will primarily use � -morphisms (see the previous para-
graph). Where � -morphisms are defined naturally on basic dots, one can see
o -morphisms as mappings which are naturally defined on points.
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Actually, a trail morphism from a natural space (V ,T# ) to another space
(W ,T#2 ) is given by a refinement morphism from the ‘trail space’ associated
with (V ,T# ), to (W ,T#2 ). To define this trail space, we form new basic dots
from finite sequences of ‘old’ basic dots (as described in 1.0.7).

DEFINITION: Let (V ,T# ) be a natural space derived from (V, #, � ). Let n∈N ,
and let =0� . . . �n−1 be a shrinking sequence of basic dots in V. The
≺ -trail of  , notation , is the longest subsequence 0 � . . . � s of .
Let p=p0, p1, . . . be a point in V, then we write p(n) for the finite sequence
p0, . . . , pn−1 of basic dots in V. Notice that p0� . . . �pn−1, by definition of
points. Write p(n) for the ≺ -trail of p(n). A finite sequence =0 � . . . � n−1
of basic dots in V is called a ≺ -trail from 0 to n−1 of length n, or simply
a trail from 0 to n−1 in (V, ≺ ). The empty sequence is the unique trail of
length 0, and denoted ©∗. The countable set of trails in (V, ≺ ) is denoted
V o, notice that V o={p(n) |n∈N, p∈V}.

Let =0, . . . , n−1 and b=b0, . . . , bm−1 be trails in (V, ≺ ) such that n−1 �
b0, then we write ?b for the concatenation 0, . . . , n−1, b0 . . . bm−1 which is
again a trail and so in V o. (Hereby ?©∗ is defined and equals .).

The basic dots of our trail space are the trails in (V, ≺ ). For trails =0, . . . ,
n−1 and b=b0, . . . , bm−1 we put: �∗b iff there is a trail c∈V o in such that
=b?c. We also put #∗b iff n−1#bm−1. The natural space (V o,T#

o) defined
by the pre-natural space (V o, #∗, �∗) is called the trail space of (V ,T# ).

Finally, a � -morphism ƒ from (V o,T#
o) to another natural space (W ,T#2 ) is

called a trail morphism (notation o -morphism) from (V ,T# ) to (W ,T#2 ). For
a point p∈V we write ƒ (p) for the point of W given by ƒ (p(0)), ƒ (p(1)), . . ..
(END OF DEFINITION)

REMARK: From the pointwise perspective, one readily sees that (V o,T#
o) is

‘just another representation’ of (V ,T# ). Differences in representation should
be filtered out by the concept of ‘isomorphism’. This is the main reason
for introducing trail morphisms, since (V o,T#

o) is not always � -isomorphic
to (V ,T# ) (for an example consider the natural real numbers). In fact re-
finement morphisms preserve the lattice-order properties of the basic neigh-
borhood system which is chosen for a specific representation. Due to the
presence of an apartness/equivalence relation, these order properties are
not always relevant since we can freely add or distract equivalent basic dots
to our system with different lattice properties, without essentially changing
the point space. Also see A.5.3 for extra comments. (END OF REMARK)
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THEOREM: Let (V ,T# ) and (V o,T#
o), (V o, #∗, �∗) be as in the above definition.

Then

(i) (V o, #∗, �∗) is a pre-natural space and (V o,T#
o) is a natural space.

(ii) (V o,T#
o) is homeomorphic to (V ,T# ) as a topological space. A home-

omorphism is induced by the o -morphism ido from (V ,T# ) to (V o,T#
o)

given by ido(p)=p(0), p(1), p(2), . . . ∈V o for p∈V (as a refinement mor-
phism ido is the identity on V o, with ido()= for ∈V o). Its inverse
homeomorphism is induced by the � -morphism id∗ from (V o,T#

o) to
(V ,T# ) which is defined by putting id∗(©∗)=© and id∗()=n for a
trail =0, . . . , n in V o.

(iii) Let ƒ be a o -morphism from (V ,T# ) to (W ,T#2 ). Then ƒ is continuous.

PROOF: Ad (i): this is a straightforward checking of the definitions, which we
leave to the reader.

Ad (ii): First we show that ido is continuous.
Let U be open in (V o,T#

o). We must show that T = ido
−1(U) is open in (V ,T# ).

For this let ∈T, and y∈V. We must show: #y or there is an index m such
that [ym]⊆T. Since ido() is in U, we can choose case U(1) ido()#∗ido(y),
then there is n∈N such that (n)#∗y(n) which implies n−1#yn−1 and so
#y; or case U(2) there is an index m such that [y(m+ 1)]⊆U. Then one
easily sees that [ym]⊆T. For let z∈ [ym], then let zym=y0, . . . , ym, zM, zM+1, . . .
be the canonical z-equivalent point such that zym(m+1)=y(m+1), where M

is the first index for which zM≺ym. Trivially ido(zym) is in U. Since U is open,
U is closed under equivalence, and therefore ido(z) is in U, which shows that
z is in T.

The � -morphism id∗ is continuous by theorem 1.1.0. That both morphisms
are injective11, and therefore homeomorphisms is trivial.

Ad (iii): Strictly speaking, ƒ is defined as a � -morphism ƒ o from (V o,T#
o)

to (W ,T#2 ). So as a function from (V ,T# ) to (W ,T#2 ), simply notice that
ƒ = ƒ o ◦ ido, where ƒ o is continuous by theorem 1.1.0 and ido is continuous by
(ii) above, and so ƒ is continuous as well. (END OF PROOF)

If ƒ is a � -morphism from (V ,T#1 ) to (W ,T#2 ), then ƒ ◦ id∗ is by definition a
o -morphism from (V ,T#1 ) to (W ,T#2 ), which is clearly equivalent to ƒ on V.
Therefore we will consider each � -morphism to be a o -morphism as well.

11Meaning: #y implies ƒ ()#ƒ (y).
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1.1.5 Natural morphisms’ convention The difference between the notions � -
morphism and o -morphism is often not relevant, which justifies the following:

CONVENTION: If (V ,T#1 ) and (W ,T#2 ) are two natural spaces, and ƒ is a � -
morphism or a o -morphism from (V ,T#1 ) to (W ,T#2 ), where the difference
is irrelevant, then we simply say: ƒ is a natural morphism from (V ,T#1 ) to
(W ,T#2 ), or even more simply: a morphism from (V ,T#1 ) to (W ,T#2 ). Only
when the difference is relevant will we specify ‘refinement morphism’ and/ or
‘trail morphism’. This happens mostly in technical proofs or in the context of
computation, since refinement morphisms are generally more efficient. (END

OF CONVENTION)

1.1.6 Composition of natural morphisms Given two � -morphisms ƒ , g from
natural spaces V to W and W to Z respectively, to form their composition is
unproblematic. We leave it to the reader to verify that putting h()=g(ƒ ())
for all ∈V defines a � -morphism h from V to Z.

But if ƒ , g are o -morphisms from natural spaces V to W and W to Z respec-
tively, then how do we form the composition? Here V, W and Z are derived
from the pre-natural spaces V,W,Z, with (pre-natural) trail spaces V o,Wo, Zo

respectively.

One should notice that ƒ is defined as a � -morphism from V o to W, but can
be uniquely lifted to a � -morphism ƒ o from V o to Wo. This is straightforward,
for a basic dot  = 0, 1, . . . , n−1 in V o we look at b = ƒ (0), ƒ (0, 1), . . .,
ƒ (0, 1, . . . , n−1) and put ƒ o()=b (the ≺ -trail of b) which is a basic dot in
Wo since ƒ is a � -morphism.

Therefore the composition of ƒ and g is defined to be the composition g ◦ ƒ o,
which is a o -morphism from V to Z. Since any � -morphism can be thought
of as a o -morphism (trivially), the composition of a � -morphism with a o -
morphism can be similarly dealt with. The composition of a o -morphism with
a � -morphism directly yields a new o -morphism.

1.1.7 Isomorphisms We can now define a natural parallel to the topological
idea of ‘homeomorphism’. We will call this parallel ‘isomorphism’. Iso-
morphisms between natural spaces will automatically be homeomorphisms,
but classically we can find homeomorphic natural spaces which are non-
isomorphic. This shows that our theory enriches CLASS as well.
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DEFINITION: Let (V ,T#1 ) and (W ,T#2 ) be two natural spaces, let ƒ be a natural
morphism from (V ,T#1 ) to (W ,T#2 ). Then ƒ is called an isomorphism iff there
is a morphism g from (W ,T#2 ) to (V ,T#1 ) such that g(ƒ ())≡1 for all  in
V and ƒ (g(y))≡2y for all y in W. An isomorphism ƒ from (V ,T#1 ) to (V ,T#1 )
is called an automorphism of (V ,T#1 ), and an identical automorphism iff
ƒ ()≡1 for every ∈V. (END OF DEFINITION)

To see whether certain properties of natural spaces are truly ‘natural’, we
check if they are preserved under isomorphisms.

1.2 FUNDAMENTAL NATURAL SPACES

1.2.0 Baire space and Cantor space Baire space (NN) is fundamental because
it is a universal natural space (meaning that every natural space can be
thought of as a quotient space of Baire space). From chapter two on, we
exploit this to simplify the theory considerably. Cantor space ({0,1}N) is
likewise a universal ‘fan’ by which we mean a space generated by a partial
order � which is a finitely branching tree. Cantor space can be seen as a
universal compact space.

1.2.1 The class of natural spaces is large Many spaces can be represented
by a natural space. In other words, the class of natural spaces is large. A
non-exhaustive and also repetitive list of spaces which can be represented
as a natural space:

• every complete separable metric space

• the (in)finite product of natural spaces

• N, R, C, the complex p-adic numbers Cp, RN, Baire space, Cantor space,
Hilbert space H, every Banach space, the space of locally uniformly con-
tinuous functions from R to R, many other continuous-function spaces,
and Silva spaces (see chapter four).

Sometimes, classically defined non-separable spaces (for instance function
spaces equipped with the sup-norm) can be constructed under a different
metric to become separable. Although the topology is then not equivalent,
one can still work with the space constructively as well. For this, one some-
times needs to construct a completion first, to refind the original space as
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a subset of the completion. Thinking things through, we do not really see
a constructive way to define ‘workable’ spaces other than by going through
some enumerably converging process. In this sense we concur with Brouwer.
Brouwer’s definition of spreads in essence parallels the definition of natural
spaces. But unlike Brouwer, we are also engaged in achieving computational
efficiency (APPLIED perspective), as well as establishing links between CLASS,
INT, RUSS and BISH (and formal topology).

An example of a continuous function space which cannot be represented as
a natural space is the space of continuous functions from Baire space to
itself. We prove this result (copied from [Vel1981]) using natural morphisms,
in 2.4.2. Still, we will see that there is a subset Mor of Baire space NN such
that every α∈Mor codes a natural morphism from Baire space to itself, and
every natural morphism from Baire space to itself is coded by some α∈Mor.

1.2.2 Basic-open spaces and basic neighborhood spaces Basic dots do not
always represent an open set, or even a neighborhood in the apartness topol-
ogy.12 Still, so-called ‘basic-neighborhood spaces’ are fundamental, espe-
cially in the context of metric spaces. In CLASS, INT and RUSS every continu-
ous function from a natural space to a basic neighborhood space (V ,T# ) can
be represented by a natural morphism. The idea is to look at basic dots 

which are neighborhoods, meaning [[]] contains an inhabited open U.

DEFINITION: Let (V ,T# ) be a natural space, with corresponding pre-natural
space (V, #, � ). Let  be a basic dot, and let ∈ []. Then  is called a basic

(open) neighborhood of  iff [[]] is a neighborhood of  (resp. [[]] is itself
open). Now (V ,T# ) is called a basic-open space iff [[]] is open for every
∈V. (V ,T# ) is called a basic neighborhood space iff (V ,T# ) is isomorphic
to a basic-open space. (END OF DEFINITION)

REMARK: ‘Basic-open space’ is not a ‘natural’ property, meaning that it is not
necessarily preserved under isomorphisms (see 1.0.8, where (RQ , #

◦
R , �

◦
R)

and (RQ , #R , �R ) are isomorphic, yet only (RQ , #
◦
R , �

◦
R) is basic-open). So we

‘naturalize’ the concept ‘basic-open space’ to ‘basic neighborhood space’,
which then trivially is preserved under isomorphisms. This ‘naturalizing’ of
desirable properties might seem a bit cheap, but is simply practical. Perhaps
basic neighborhood spaces are also definable by the following property, but
we leave this as a challenge to the reader. (END OF REMARK)

12In contrast to formal topology, where one only works with opens. We believe this to be
unwieldy, both computationally and w.r.t. compactness issues.
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PROPOSITION: If (V ,T# ) is a basic neighborhood space then there is an identi-
cal automorphism ƒ of (V ,T# ) such that ƒ ()n is a basic neighborhood of ƒ ()
for every ∈V , n∈N (‘there is an identical automorphism which constructs
every point as a shrinking sequence of basic neighborhoods of that point’).

PROOF: Let (w.l.o.g., see A.5.2) g, h respectively be � -isomorphisms between
(V ,T# ) and the basic-open space (W ,T#2 ). Put ƒ =h ◦ g, then ƒ is an iden-
tical automorphism. Let ∈V , n∈N, then [[g(n)]] is open in (W ,T#2 ) since
(W ,T#2 ) is basic-open. Since h is also a homeomorphism of the topologies,
we see that h(g(n))= ƒ ()n is a basic neighborhood of ƒ (). (END OF PROOF)

If (V ,T# ) is a basic neighborhood space derived from (V, #, � ), then V con-
tains a neighborhood basis for the natural topology. The converse does not
hold in CLASS: see A.2.5 for a space where in CLASS every point has an equiv-
alent which arises as a shrinking sequence of basic neighborhoods of that
point, and yet there is no identical automorphism sending each point to such
an equivalent shrinking sequence. This illustrates that for natural spaces the
information ‘∀∃y [P(, y)]’ only becomes effective if we know that there is
a morphism ƒ such that ‘∀ [P(, ƒ ())]’.13

The prime example of a basic neighborhood space is a basic-open space
where the basic dots represent open sets (then the identity on V is an iden-
tical automorphism which constructs every point as a shrinking sequence of
basic neighborhoods of that point). We put forward the main theorem, that
in CLASS, INT and RUSS continuous functions from a natural space to a ba-
sic neighborhood space can be represented by a natural morphism. Later
we show that every complete metric space has a basic-open representation
(and therefore in CLASS, INT and RUSS by the corollary below a unique repre-
sentation (up to isomorphism) as a basic neighborhood space, see 1.2.3).

THEOREM: (in CLASS, INT and RUSS)
Let ƒ be a continuous function from a natural space (V ,T#1 ) to a basic neigh-
borhood space (W ,T#2 ). Then there is a natural morphism g from (V ,T#1 ) to
(W ,T#2 ) such that for all  in V: ƒ ()≡2g().

PROOF: The not so easy proof is given in the appendix (A.3.1). In INT the
existence of g follows already from the information ‘∀∃y[y= ƒ ()]’ and the
fact that every natural space is ‘spreadlike’ (see 2.2.0). (END OF PROOF)

13In INT, the statement ‘∀∃y [P(, y)]’ is generally equivalent to ‘there is a morphism ƒ

such that ∀ [P(, ƒ ())]’. This is precisely the content of the INT-axiom of continuous choice
AC11 (see A.4.4, and 27.1 in [Kle&Ves1965]).
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COROLLARY: (in CLASS, INT and RUSS) If (V ,T#1 ) and (W ,T#2 ) are two homeo-
morphic basic neighborhood spaces, then they are isomorphic.

REMARK: The theorem suggests that from a BISH point of view, the concept
of ‘natural morphism’ adequately captures the notion of continuous function
(under the usual topological definition). To (partly) capture the metric prop-
erty ‘uniformly continuous on compact subspaces’ we will define ‘inductive
morphisms’ later on. (END OF REMARK)

1.2.3 Complete separable metric spaces are natural To see that the class of
natural spaces is large enough to merit interest, we point out with a theorem
below that every complete separable metric space is homeomorphic to a
natural space. Therefore every separable metric space is homeomorphic to
a subspace of a natural space. Some key examples of spaces which can be
constructed as a natural space are N, R, C, the complex p-adic numbers Cp,
RN, Baire space, Cantor space, Hilbert space H, and every Banach space. We
prove slightly more, because of our interest in different representations of
complete metric spaces:

THEOREM: Every complete separable metric space (X, d) is homeomorphic
to a basic-open space (V ,T# ).

PROOF: The rough idea is simple: for a separable metric space (X, d) with
dense subset (n)n∈N, let for each n, s∈N a basic dot be the open sphere
B(n,2−s) = {∈X |d(, n)< 2−s}. Then we have an enumerable set of dots
V by taking V = {B(n,2−s) |n, s∈N}. The only trouble now is to define #
and � constructively, since in general for n,m and s, t the containment rela-
tion B(n,2−s)⊆B(m,2−t) is not decidable. We leave this technical trouble,
which can be resolved using AC01 (countable choice), to the appendix A.3.2.
(END OF PROOF)

COROLLARY: In CLASS, INT and RUSS the following holds:

(i) A continuous function ƒ from a natural space (W ,T# ) to a complete
metric space (X, d) can be represented by a morphism from (W ,T# ) to a
basic neighborhood space (V ,T# ) homeomorphic to (X, d), by theorem
1.2.2.

(ii) A representation of a complete metric space as a basic neighborhood
space is unique up to isomorphism.
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In BISH the following holds:

(iii) If (X, d) and (V ,T# ) are as above in the theorem, then we can define a
metric d′ on (V ,T# ) (see def. 4.0.0) by defining d′(, y)=d(h(), h(y))
for , y∈V and h a homeomorphism from (V ,T# ) to (X, d). This metric
can be obtained as a morphism from (V×V ,T# ) to Rnt by the construc-
tion of (V ,T# ). We then see that the apartness topology and the metric
d′-topology coincide, in other words (V ,T# ) is metrizable. We conclude:
on a well-chosen basic-neighborhood natural representation of a com-
plete metric space, the metric topology coincides with the apartness
topology.

REMARK:

(i) The construction in the proof sketch above merits a closer look, since
we do not simply choose each ‘rational sphere’ B(n, q), q∈Q to be a
basic dot. Yet for R and its corresponding natural space Rnt, choosing
all closed rational intervals works fine. We cannot guarantee in the
general case (X, d) however, that by taking V = {B(n, q) |q∈Q, n∈N}
we end up with a natural space (V ,T# ) which is homeomorphic to (X, d).
We do know that for X = Cp, taking V = {B(n, q) |q∈Q, n∈N} gives us
a (V ,T# ) which contains ‘more’ points than Cp. It might prove a nice
challenging exercise to the reader to see why this is the case. In the
appendix A.2.1 we detail this nice example of a non-archimedean metric
natural space.

(ii) For most applied-computational purposes, a basic neighborhood repre-
sentation of a complete metric space seems the best option. We believe
that for R, the representation σR which we define in the following chap-
ter is a good choice for computational purposes also. Our definition of
σR and � -morphisms matches the recommendations in [BauKav2009]
for efficient exact real arithmetic.

(iii) That the metric topology coincides with the apartness topology on (a
well-chosen basic-neighborhood representation of) a complete metric
space, allows for simplification later on. Our definition of ‘direct limit’
leading to e.g. Silva spaces uses only the apartness topology.

(END OF REMARK)

1.2.4 Metrizability of natural spaces From intuitionistic topology, we can re-
trieve results on the metrizability of natural spaces. With a definition of the
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notion ‘star-finitary’ which closely resembles the notion ‘strongly paracom-
pact’, we obtain the constructive theorem that every star-finitary natural
space is metrizable.

Also, we can easily define natural spaces which are non-metrizable. Compa-
rable to ideas from Urysohn ([Ury1925a]), in intuitionistic topology one finds
spaces with separation properties ‘T1 but not T2’ and ‘T2 but not T3’ (see
[Waa1996]). These spaces can be transposed directly to our setting.

However, a different class of non-metrizable natural spaces arises when we
look at direct limits in infinite-dimensional topology. As an example we show
that the space of ‘eventually vanishing real sequences’ (which is the direct
limit of the Euclidean spaces (Rn)n∈N) can be formed as a non-metrizable
natural space.

We postpone the definitions and theorems to chapter four.

1.2.5 Infinite products are natural Another way to see that the class of nat-
ural spaces is large is to look at (in)finite products of natural spaces. We
postpone the definitions to paragraph 3.5.1, because of some technical con-
cerns and extra issues. The basic idea to arrive at the natural product of a) a
finite sequence b) an infinite sequence of natural spaces is simple however.
For (weak) basic neighborhood spaces the (in)finite natural product space is
homeomorphic to the Tychonoff product-topology space.14

1.3 APPLIED MATH INTERMEZZO: HAWK-EYE, BINARY AND DEC-
IMAL REALS

1.3.0 Hawk-Eye Already we have introduced enough material to discuss an in-
teresting application of mathematics, in the world of professional tennis. In
2006 the multicamera-fed decision-support system Hawk-Eye was first offi-
cially used to give players an opportunity to correct erroneous in/out calls.
Hawk-Eye uses ball-trajectory data from several precision cameras to calcu-
late whether a given ball was IN: ‘inside the line or touching the line’ or OUT:
‘outside the line’. Hawk-Eye is now widely accepted, for decisions which can
value at over $100,000.

14See 3.5.2. Products of (weak) basic neighborhood spaces are ‘faithful’. In CLASS and INT

also products of ‘star-finitary’ spaces are faithful. We know of no unfaithful products.
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The measurements of the cameras can be seen as the ‘dots’ or ‘specks’ that
we used for illustration in our introduction. Software of Hawk-Eye must in
some way run on these dots. The interesting thing is that Hawk-Eye does not
have the feature of a LET: ‘perhaps the ball was in, perhaps the ball was out,
so replay the point’. From this and our work so far we immediately derive:

claim Hawk-Eye, irrespective of the precision of the cameras, will systemat-
ically call OUT certain balls which are measurably IN or vice versa.

The claim is not per se important for tennis. Hawk-Eye admits to an inac-
curacy of 2-3 mm, and under this carpet the above claim can be conve-
niently swept (still, one sees ‘sure’ decisions where the margin is smaller).
Hawk-Eye’s inaccuracy is usually blamed on inaccuracy of the camera sys-
tem. But regardless of camera precision we cannot expect to solve the topo-
logical problem that there is no natural morphism from the real numbers to
a two-point natural space {IN,OUT} which takes both values IN and OUT. And
our recommendation to Hawk-Eye is to introduce a LET feature, see appendix
A.2.0 for a more detailed description.

1.3.1 Binary, ternary and decimal real numbers Mathematically more chal-
lenging than morphisms from Rnt to a two-point space are morphisms from
Rnt to the (natural) binary real numbers Rbin and decimal real numbers Rdec .
These morphisms reveal the topology behind different representations of
the real numbers on a computer, and transitions between these represen-
tations. For simplicity we discuss mainly Rbin , since the situation with Rdec

is completely similar. For some purposes also the ternary real numbers Rter
come in handy.

DEFINITION: RQ,bin=D {
©
R}∪{[

n
2m ,

n+1
2m ] |n∈Z,m∈N}, RQ,ter=D {

©
R}∪{[

n
3m ,

n+1
3m ] |

n∈Z,m∈N} and RQ,dec =D {
©
R}∪[

n
10m ,

n+1
10m ] |n∈Z,m∈N}.

Then Rbin = (RQ,bin , #R , �R ) is the natural space of the binary real num-

bers . Similarly we form the corresponding natural spaces Rter and Rdec of
the ternary and decimal real numbers .

Put [0,1]R,bin =D {[
n
2m ,

n+1
2m ] |n,m∈N |n< 2

m}, [0,1]R,ter =D {[
n
3m ,

n+1
3m ] | n,m∈N |

n < 3m} and [0,1]R,dec =D {[
n
10m ,

n+1
10m ] |n,m∈N |n< 10

m} to form the corre-
sponding natural spaces [0,1]bin, [0,1]ter and [0,1]dec, each with the same
maximal dot [0,1] denoted by ©[0,1].

Notice that as a partial order, (RQ,bin , �R ) is a tree. The reader can think
of the natural binary reals as the set of those real numbers  that can also



Applied math intermezzo: Hawk-Eye, binary and decimal reals 30

be given as a binary expansion  = (−1)s ·n∈Nn ·2−n+m, where s∈{0,1},
m∈N and n∈{0,1} for all n∈N, such that m> 0 implies 0 6=0. We call
s the sign and write s=+,− for s=0,1 respectively. We call m the binary

point place . Then the (n)n∈N are the binary digits in this binary expansion
of , and we write =(s)0 1 . . . m.m+1 . . .. Notice the binary point that
we write between m and m+1 to denote the binary point place.
Replacing ‘binary, 2’ with ‘ternary, 3’ and ‘decimal, 10’ respectively, we ob-
tain the similar definitions for Rter and Rdec . (END OF DEFINITION)

Classically every real number y has an equivalent binary expansion, but in
computational practice and in constructive mathematics this is not the case
(see e.g. [GNSW2007] for a thorough discussion). So with Rbin , Rter and Rdec

we in practice obtain different representations of the real numbers. We wish
to shed some light on the natural topology involved in the (im)possible tran-
sition from one such representation to another.

1.3.2 Morphisms to and from the binary reals It turns out that a morphism
ƒ from Rnt to Rbin which is order preserving (≤Ry implies ƒ ()≤Rƒ (y)) has
to be ‘locally constant’ around the ƒ -originals of the rationals { k

2m |k,m∈N}.
These are the points where the binary expansion has two alternatives (e.g.
for 1 both 0.111 . . . ≡0 + 1 ·2−1 + 1 ·2−2 + 1 ·2−3 + . . . and 1.000 . . . ≡1 +
0 ·2−1 + 0 ·2−2 + 0 ·2−3 + . . . are binary representations). Since these binary
rational numbers lie dense in R, there can be no injective morphism from
Rnt to Rbin (notice that any injective morphism ƒ from Rnt to Rnt is either
order preserving, or order reversing in which case a similar argument for
local constancy obtains). But this does not mean that all morphisms from
Rnt to Rbin are constant. We will derive a non-constant morphism from Rnt

to Rter from our metrization theorem in 4.0.8. We can easily turn this into a
non-constant morphism from [0,1] to [0,1]bin, when we realize that [0,1]bin
and [0,1]ter are isomorphic.

The well-known Cantor function ƒCn (also known as ‘the devil’s staircase’) is
another example of a non-constant natural morphism from [0,1] to [0,1]bin.
The Cantor function is most easily described as a refinement morphism from
[0,1]ter to [0,1]bin, but also can be given as a trail morphism on [0,1].15

We now have an example in CLASS of a continuous function between natural
spaces which cannot be represented by a morphism. In CLASS, the identity
is a homeomorphism from Rnt to Rbin (remember that in CLASS we work with

15We leave this latter statement as a non-trivial exercise to the reader though, see A.2.2.



Intuitionistic phenomena in natural topology 31

the equivalence classes, and that every real number has an equivalent bi-
nary representation). But this identity cannot be represented by a natural
morphism, as we pointed out above. In the light of theorem 1.2.2, the ‘rea-
son’ for this is that Rbin is not a basic neighborhood space, which we can
easily verify by looking at the real number 1

2 . In fact, in Rbin , of the basic dots
only the maximal dot is a neighborhood of 1

2 .

We will make the above statements and definitions precise in the appendix
A.2.2, also showing the equivalence between the reals allowing a binary ex-
pansion and the binary reals. We then use the ternary reals to construct the
Cantor set C[0,1] , and the ContraCantor set, which is a compact subspace C[0,1]
of [0,1] such that: dR( C[0,1] ,C[0,1])=0 and yet d(, y)> 0 for all recursive
∈ C[0,1] , y∈C[0,1] . So in RUSS we have dR(,C[0,1])> 0 for ∀∈ C[0,1] , giving us
a RUSS example of two disjoint complete compact spaces with distance 0.

REMARK: One can show with little effort that for n,m∈N the n-ary and m-
ary reals are � -isomorphic. However, we believe the n-ary reals can only be
identically embedded in the m-ary reals if there is a b≥ 1 in N such that m di-
vides nb (for an identical embedding ƒ we have ƒ ()≡R for all ). This gives
a natural-topological classification of the different n-ary representations of
real numbers. We leave this as an exercise. (END OF REMARK)

1.4 INTUITIONISTIC PHENOMENA IN NATURAL TOPOLOGY

1.4.0 Pathwise and arcwise connectedness From the previous paragraph we
deduce an interesting property of Rbin (and Rter , Rdec ): it is a pathwisent

connected space which is not arcwisent connected. For this we must define:

DEFINITION: A natural space (V ,T# ) is called pathwisent (resp. arcwisent )
connected iff for all , y∈V there is a morphism (resp. an injective mor-
phism) ƒ from [0,1]nt to (V ,T# ) such that ƒ (0)≡ and ƒ (1)≡y. (END OF

DEFINITION)

THEOREM: Rbin (as well as Rter , Rdec ) is a pathwisent connected space which
is not arcwisent connected.
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PROOF: A detailed constructive proof for Rter is given in [Waa1996] in an in-
tuitionistic setting. We indicate the translation to our setting in the appendix
A.3.3. The reader should have no trouble giving a proof using the above
subsections. (END OF PROOF)

1.4.1 Intuitionistic phenomena arise naturally The previous examples and
theorems are a quite faithful mirror of the phenomena studied in intuitionism
(INT). In INT, an elegant class of natural spaces (called ‘spreads’) is studied.
Hereby the main intuitionistic axiom which is not classically valid is the con-
tinuity principle CP (and by implication its stronger versions AC10 and AC11,
see the appendix A.4). A main consequence of CP is that total functions on
spreads are always given by morphisms. In natural topology, by directly con-
sidering morphisms we create a simple classical mirror of many intuitionistic
results. Not surprisingly, these results have direct computational meaning,
and are therefore also of relevance for applied mathematics.

Let’s introduce CP here, to see what sets INT apart from CLASS axiomati-
cally.16 CP is formulated for Baire space NN, we show that Baire space is a
universal natural space in the next section. For an element α of Baire space
NN we write α(n) to denote the finite sequence formed by the first n values
of α.

CP Let A be a subset of NN ×N such that ∀α∈NN∃n∈N [(α, n)∈A]. Then
∀α∈NN∃m,n∈N ∀β∈NN [α(m)=β(m)→ (β, n)∈A].

The motivation for this axiom is that in INT infinite sequences arise step-by-
step, and that among these sequences are also those about which we know
-at any given time m- nothing more than the first m values. We can also
form recursive determinate sequences, no problem, but asserting that for
all α one can find an n such that (α, n)∈A means that the indeterminate
sequences are included. For any such indeterminate sequence α one has to
produce the favourable n with (α, n)∈A at some point in time, say m. At this
point, we know only the first m values of α, which implies that for β∈NN with
β(m)=α(m), we also have (β, n)∈A.

The other intuitionistic axioms (apart from the strengthenings of CP) are all
valid classically, and the above axiom also even makes sense classically in

16Of course, apart from axioms there is also a fundamental conceptual difference between
constructive mathematics and classical mathematics, regarding infinity and omniscience, see
also 4.2.1.
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the right setting.17 We think that such a setting is obtained naturally when
considering a two-player game with limited information, see also section
4.2.4). In this setting we can even prove CP. Notice that this setting strongly
resembles that of our engineer taking measurements from nature. This gives
a philosophical explanation for the aptness of INT for physics.

However, by considering morphisms on natural spaces a classical mathe-
matician can skip most of this issue and still see intuitionistic phenomena
arising naturally and quite faithfully.

We have come to the end of this chapter. Its main purpose, apart from
giving the basic definitions and properties, is to give some inkling of the re-
lation between constructive topology and applied mathematics (our APPLIED

perspective). In the next chapters we will turn predominantly to the other
perspectives GENERAL, CONSTRUCTIVE and PHYSICS.

17The author considers the axiom to be simply true in its intended context. He thinks
intuitionistic mathematics deserves a prime role in mathematical investigations.



CHAPTER TWO

Baire space is universal

Natural Baire space is a universal natural space, meaning that every
natural space is the image of Baire space under a natural morphism.

Its set of basic opens can be pictured as a tree, and this partial-order
property provides a fundamental simplification. For many natural
spaces, the related concept of ‘trea’ is similarly useful.

Through Baire space, a direct link with intuitionism (INT) can be es-
tablished. We define natural spreads and spraids (corresponding to
trees and treas) as well as fans and fanns. This enables us to show,
for the APPLIED perspective, that continuous R-to-R-functions can be
represented by computationally efficient morphisms.

Cantor space is a universal fan. Compactness of Cantor space is
seen to depend on the axiom FT (Fan Theorem), derived from BT

(Brouwer’s Thesis), which holds in CLASS and INT but not in RUSS. In
RUSS, Baire space is isomorphic to Cantor space.

Since we wish to work in BISH, we do not adopt BT, and turn to
inductive definitions instead.
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2.0 INTRODUCTION TO BAIRE SPACE

2.0.0 Classical Baire space In CLASS, Baire space is NN with the usual product
topology. Baire space is a universal Polish space (‘Polish’ meaning ‘second
countable completely metrizable’), that is: every Polish space is the contin-
uous image of Baire space.18 However, in fact Baire space is universal for
a certain larger class of spaces. We can see this classically by looking at
any equivalence relation ≡ on NN, and forming the corresponding quotient
topology and quotient space. In this way we trivially see that Baire space
is universal for the class of topological spaces homeomorphic to a quotient
space of Baire space. In this paper we study this larger class from our natural
perspective. For constructive reasons we limit ourselves to quotient topolo-
gies derived from a 10-equivalence relation. To see that this class is larger
than the class of Polish spaces, it suffices to see that some of these quotient
spaces are non-metrizable.

2.0.1 Introduction to natural Baire space One goal of this paper is to give
a classical mathematician (our perspective GENERAL) an understanding of
what constructive and intuitionistic topology ‘is all about’, in such a way
that little foundational terminology is necessary. We believe that the (classi-
cally valid) setting of natural spaces and natural morphisms between them,
is a faithful mirror of Brouwer’s basic intuitionistic setting of ‘spreads’ and
‘spread-functions’.

To see that our class of natural spaces is in fact quite large, we will show
that it encompasses (representations of) every Polish space. Also, (in)finite
products of natural spaces are representable as a natural space. Another
result already noted by Brouwer is that natural Baire space N = NNnt is a uni-
versal natural space, meaning that every natural space (V ,T# ) is the image
of natural Baire space under some natural morphism from N to (V ,T# ).

To put it differently, from the GENERAL perspective we study (subspaces of)
Baire space endowed with a quotient topology derived from a 10-equivalence
relation. BUT: our view is finer than the usual classical topological view. Us-
ing morphisms we can distinguish between interesting spaces that are classi-
cally homeomorphic (indistinguishable with topological methods). AND: our
view and constructive methods can be fruitful in applied math and physics.

18This can often be used to streamline proofs for separable complete metric spaces.
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Quite some work has already been done in intuitionistic topology, with Baire
space as fundament.19 We will be able to retrieve some nice results (e.g. re-
garding metrizability of natural spaces) in a simple way, once we have shown
that our setting of natural spaces is indeed a faithful mirror of Brouwer’s set-
ting. Since we take a neutral constructive approach, we will not use any spe-
cific classical or intuitionistic axioms. However we will freely use the axioms
of countable choice AC01 and dependent choice DC1, which are generally
accepted as constructive (also see A.4).

2.0.2 Natural Baire space There is much mathematical beauty in Baire space,
and its definition as natural space is likewise elegant. Its set of basic dots is
N∗, the set of all finite sequences of natural numbers (representing the basic
clopen sets of Baire space). We use the definition also to relate natural Baire
space to usual Baire space.

DEFINITION: Let N∗ be the set of all finite sequences of natural numbers.
For = 0, . . . , , b= b0, . . . , bj∈N∗ the concatenation 0, . . . , , b0 . . . , bj is
denoted by  ? b. Define: b�ω iff there is c such that b =  ? c. Define:
#ωb iff  6�ωb and b 6�ω.

Then (N∗, #ω , �ω) is a pre-natural space, with the empty sequence as max-
imal dot, which we also denote ©

ω or simply © . Its corresponding natural
space (N ,T#ω ) we call natural Baire space . We also write NNnt for N .

In addition, let α∈NN and m∈N , then we write α(m) for the finite sequence
α(0), . . . , α(m − 1) consisting of the first m values of α. Notice that α(m) is
an element of N∗, so the sequence α=α(0), α(1), . . . is a point in N .
Conversely, for a point p∈N , there is a unique sequence α∈NN such that
p≡ωα. We write p∗ for this unique α, giving that p≡ωp∗ for p∈N and α=α∗

for α∈NN. 20 (END OF DEFINITION)

THEOREM: (N ,T#ω ) is homeomorphic with (NN,Tprod).

PROOF: We leave it to the reader to verify that the function α → α from NN

to N defined above is a homeomorphism, with inverse p→ p∗ (also defined
above). (END OF PROOF)

19Brouwer already gave an intuitionistic proof of the Jordan curve theorem, to mention just
one historic result.

20This also somewhat relates to the axiom of extensionality, see A.4.7.
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2.0.3 Natural Cantor space We first define the notion ‘natural subspace’, since
in natural Cantor space we have a prime example.

DEFINITION: Let (V ,T# ) be a natural space derived from (V, #, � ). Let W be
a countable subset of V, then (W, #, � ) is a pre-natural space, with corre-
sponding set of points W. If (W ,T# ) is a natural space (see def. 1.0.6), then
we call (W ,T# ) a natural subspace of (V ,T# ) iff in addition (W ,T# ) as a nat-
ural space coincides with (W ,T# ) as a topological subspace of (V ,T# ) (in the
subspace topology ‘U ⊆W is open’ is defined thus: there is an open U′ ⊆ V
such that U=U′ ∩W).
Let {0,1}∗ be the set of finite sequences of elements of {0,1}. Now natural

Cantor space is the natural subspace (C,Tnt) of natural Baire space formed
by the pre-natural space ({0,1}∗, #ω , �ω) and its set of points C. (END OF

DEFINITION)

REMARK: We will see that any natural subspace of natural Baire space is the
image of Baire space under a (continuous) morphism. From descriptive set
theory, it follows that many topological subspaces of a natural space cannot
be represented as a natural subspace. We will give an example of such a
space in 2.4.2. The notion of ‘natural subspace’ is weaker than the intuition-
istic notion of ‘subspread’. We will define this notion in our context also. Nat-
ural Cantor space is homeomorphic to usual Cantor space, and corresponds
directly to Brouwer’s fan σ2 . (END OF REMARK)

From now on, when the context is clear we will simply say ‘Baire space’ and
‘Cantor space’ and omit the extra word ‘natural’.

2.1 LATTICES, TREES AND SPREADS

2.1.0 Lattices and posets of basic dots In topology, the open sets form a lat-
tice structure under the inclusion relation. This structure is often exploited in
various ways. One way is to (somewhat) disregard meet and join operations
and focus simply on the partial-order properties (of the ‘poset’ of opens). Our
basic dots in general need not form a lattice, but their partial-order proper-
ties play an important role. This role could even be too restrictive, without
trail morphisms.
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We now go into these partial-order properties in more detail. This requires
some attention from the reader, but the rewards are great. Eventually we will
derive from these properties some important simplifications which enable
us to forge a direct link with intuitionistic topology. Brouwer’s simple and
elegant concept of a spread then becomes accessible to us as well.

2.1.1 Trees and treas The elegance of Baire space can be seen as stemming
from the fact that its poset of basic dots (N∗, �ω) forms a countable tree.
That is: for any dot  = 0, . . . , n−1∈N∗, there is a unique finite trail of
immediate successors/predecessors from ©

ω to . (Therefore any ≺ -trail
between dots is finite, and also the successor/predecessor relationship is
decidable.). We cannot hope to achieve this elegance for any natural space,
but we can show that any natural space (V ,T#1 ) is isomorphic to a natural
space (W ,T#2 ) where (W, �2) equals (N∗, �ω). Or more practical: where
(W, �2) is a full subtree of (N∗, �ω), definition follows.

This means that we could limit ourselves to natural spaces (V ,T# ) where
(V, � ) is (a full subtree of) (N∗, �ω). This has a strong simplifying effect,
which gives much beauty to Brouwer’s intuitionism. The only downside is
that for many natural spaces, we have to replace our original basic dots with
elements of N∗, which can in practice be a tedious encoding. Therefore we
propose the compromise notion of a ‘trea’. One can think of a trea as being
a tree wherein certain of the branches have been neatly glued together in
a number of places. A more precise characterization of a trea: a countable
≺ -directed acyclic graph with a maximal element, where for each node there
are finitely many immediate-predecessor trails to the maximal element, all of
the same length. Another characterization: a countable � -poset with a max-
imal element where each point has finitely many immediate-predecessor
trails to the maximal element, all of the same length.21

DEFINITION: Let (V ,T# ) be a natural space, with corresponding (V, #, � ), and
let (W ,T# ) with corresponding (W, #, � ) be a natural subspace of (V ,T# )
(so W ⊆ V). Let ≺c in V.

(i) We say that  is a successor of c in (V, � ) (notation ∝Vc, or simply
∝ c if the context is clear) iff for all b∈V, if ≺b�c then b=c. A
sequence b0 ∝. . . ∝bn in V is called a ∝ -trail of length n from b0 to bn
in (V, � ) . For b∈V we put ∝V (b) =D {d∈V |d∝b}, and simply write ∝(b)
when the context is clear.

21We apologize for the lengthy definitions. The concepts are not too difficult, and will
provide elegant simplification later on.
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(ii) (V, � ) is called a trea iff for every ∈V the set {b∈V |�b} of prede-
cessors of  is finite (then the successor relation ∝ is decidable, and for
every ∈V there are finitely many ∝ -trails from © to ) and in addition
there is an integer lg()∈N such that every ∝ -trail from © to  has
length lg().22

(iii) Now let (V, � ) be arbitrary, where (W, � ) is a tree (trea), then we say
that (W, � ) is a subtree (subtrea) of (V, � ).

(iv) Let (V, � ) be a tree (trea), and (W, � ) a subtree (subtrea). We then call
(W, � ) a full subtree (subtrea) of (V, � ) iff b∝Wd implies b∝Vd for all
b, d∈W. (Then each ∝W -trail in (W, � ) is a ∝V -trail in (V, � )).

(END OF DEFINITION)

As stated above, we can show that any natural space (V ,T#1 ) is isomorphic
to a natural space (W ,T#2 ) where (W, �2) is a full subtree of (N∗, �ω). In
intuitionism therefore, most notions are defined for full subtrees of (N∗, �ω).
But since we wish to incorporate the possibility to avoid encoding schemes,
we will define our notions for treas and full subtreas. Treas behave just like
trees (and any tree is a trea). Most of the spaces of interest that we men-
tioned so far (see 1.2.1) have an intuitive representation as a natural space
(V ,T# ) where (V, � ) is a trea. One reason for this is that the infinite prod-
uct of a sequence of treas can be naturally built as a trea.23 One might find
another reason in the existence of star-finite refinements of per-enumerable
open covers of metric spaces, see [Waa1996].

EXAMPLE: For the natural real numbers Rnt we can easily indicate an isomor-
phic subspace (σR ,T#R ) with corresponding pre-natural space (σR , #R , �R ),
where (σR , �R ) is a trea:

(σR , #R , �R ) =D ({©R}∪{[
n
2m ,

n+2
2m ] |n∈Z,m∈N}, #R , �R ).

Our examples in 1.3.1 should show why we cannot hope to find an isomorphic
subspace (V ,T#R ) where (V, � ) is a tree (!).

2.1.2 Spreads and spraids The previous example illuminates a bridge towards
intuitionistic terminology, which we give in the following definition:

22This last condition more or less follows from the first. If we only stipulate that for every
∈V the set {b∈V |�b} is finite, then we can add extra basic dots to V to end up with an
isomorphic space in which all ∝V -trails from © to a given  have the same length.

23Using finite products of basic dots from the treas involved, see 3.5.1.
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DEFINITION: Let (V ,T# ) be a natural space, with corresponding (V, #, � ), and
let (W ,T# ) with corresponding (W, #, � ) be a decidable natural subspace
of (V ,T# ) (meaning W is a decidable subset of V).

(i) We call (V ,T# ) a spread (spraid) iff (V, � ) is a tree (trea) and each
infinite ≺ -trail defines a point (see also A.5.5). Then we call (W ,T# ) a
subspread (subspraid) of (V ,T# ) iff (W, � ) is a full subtree (subtrea) of
(V, � ).

(ii) We call (V ,T# ) a Baire spread iff (V ,T# ) is a subspread of Baire space.

(iii) For any space (V ,T# ), if (W ,T# ) is a spread (spraid), then we simply
call (W ,T# ) a weak subspread (subspraid) of (V ,T# ). (If (V, � ) con-
tains an infinite ≺ -trail between two dots, then we could drop the prefix
‘weak’.24).

By extension, (V ,T# ) is spreadlike iff there is an isomorphism between
(V ,T# ) and a spread. (END OF DEFINITION)

EXAMPLE: Important basic examples of subspraids are obtained as follows.
For (V ,T# ) a spraid and  in V, one easily sees that V={b∈V |b�}={}�
determines a subspraid of V if we put its maximal dot as ©=. These basic
subspraids are important later on in defining ‘genetic induction’.

2.2 UNIVERSAL NATURAL SPACES

2.2.0 Baire space is universal Baire space is a universal natural space, by
which we mean that each natural space can be seen as the image of Baire
space under a natural morphism. Brouwer already realized this, and simpli-
fied his concepts accordingly.25 In our setting, we adopt a similar simplifica-
tion, for esthetic reasons and to save paper and energy. We show that every
natural space is spreadlike, which on a meta-level gives us a one-on-one
correspondence with many important intuitionistic results.

THEOREM: Every natural space is spreadlike. In fact, every natural space
(V ,T# ) is isomorphic to a spread (W ,T# ) whose tree is (N∗, �ω).

24If (V, � ) contains such an infinite trail, then (V, � ) is not a trea and (V ,T# ) is not a spraid.
So the condition for spraids and subspraids, that (W, � ) is a full subtrea of (V, � ), becomes
void. However we cannot always decide whether (V, � ) is a trea or not.

25Often in difficult language...
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COROLLARY:

(i) Let (V ,T# ) be a natural space, then there is a surjective � -morphism
from Baire space to (V ,T# ). (‘Baire space is a universal spread’, ‘every
natural space is the natural image of Baire space’, ‘every natural space
is a quotient topology of Baire space’).

(ii) If (V ,T# ) is a basic-open space (see definition 1.2.2) then (V ,T# ) is
isomorphic to a basic-open spread (W ,T# ) whose tree is (N∗, �ω).

PROOF: Not trivial, see A.3.4 where we give a self-contained proof. (END OF

PROOF)

From the theorem we reobtain Brouwer’s simplification: without any loss of

generality we may assume that a given natural space (V ,T# ) is a spread.
Points in V can be constructed step-by-step, as infinite trails in the countable
tree (V, � ). Any such tree can of course be embedded as a full subtree in
(N∗, �ω).

The corollary gives the equivalent picture that each natural space (V ,T# )
with corresponding pre-natural space (V, #, � ) is in fact nothing but a pre-
apartness #V and a refinement relation �V on N∗ which respect #ω and �ω .
To define these decidable relations we only have to ‘pull back’ the decidable
relations # and � using the given surjective morphism ƒ thus: for , b∈N∗

put #Vb resp.  �V b iff ƒ ()#ƒ (b) resp. ƒ ()� ƒ (b). Then #Vb resp. �ωb
implies #ωb resp.  �V b.

An equivalent situation which avoids encoding arises whenever a natural
space (V ,T# ) contains a subspraid on which the identity is an isomorphism.
Then from the often vast partial-order universe of (V, � ) we can restrict our-
selves to a subtrea. We give an important example below where the isomor-
phic subspace is a spraid. We believe this to be the most common setting
for natural spaces. In the uncommon case that we cannot find an isomorphic
subspace which is a spraid, we can always invoke Brouwer’s encoding to find
an isomorphic spread.

EXAMPLE: Looking at the natural real numbers Rnt, we can easily indicate an
isomorphic subspace which is a spraid as in example 2.1.1. Put

σR =D {
©
R}∪{[

n
2m ,

n+2
2m ] |n∈Z,m∈N}.

Then (σR , #R , �R ) is a spraid which is an isomorphic subspace of Rnt. To turn
this spraid into an isomorphic spread, we only have to ‘unglue’. The best way
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to do so is to look at the trail space σR
o of σR (see def. 1.1.4). Specifically, we

look at the ∝ -trails in σR
o which (if not equal to the empty sequence ©∗) start

with a basic interval in ∝(©R)={[m,m+2] |m∈Z}. So put:

σR

∝ =
D
{=0, . . . n−1∈σR

o |n∈N | is a ∝ -trail and n≥ 1→ lg(0)=1}

Then σR

∝ has as maximal dot ©∗, and an example of a basic dot in σR

∝ is the
sequence [0,2], [1,2], which has as unglued twin the basic dot [1,3], [1,2].
For simplicity, we also write σR

∝ for the spread derived from the pre-natural
space (σR ∝, �

∗, #∗), which is the unglued version of σR. Similarly we define:

σ[0,1] =D {[
n
2m ,

n+2
2m ] |n,m∈N |n+2≤ 2

m,m≥ 1},

so that taking ©[0,1]=[0,1] we get a subfann σ[0,1] of σR which is isomorphic
to [0,1]. We can also unglue this subfann, as a subfan σ[0,1]

∝ of σR ∝. We leave
the details to the reader.

Another more involved example of a spraid arises when building the natural
space Cnif([0,1],R)nt of uniformly continuous functions from [0,1] to R.
We will sketch this in the appendix, see A.2.4, referring for details to earlier
work of Brouwer.

2.2.1 Cantor space is a universal fan Similar to Baire space being a universal
spread, Cantor space is a universal fan, by which we mean that each ‘finitely
branching’ spraid can be seen as the image of Cantor space under a natural
morphism:26

DEFINITION: Let (V ,T# ) be a spread (spraid) with corresponding (V, #, � ), so
(V, � ) is a tree (trea). We call (V, � ) finitely branching iff for all c∈V the
set ∝(c)={∈V |∝ c} is finite. We call (V ,T# ) a fan (fann) iff (V, � ) is a
finitely branching tree (trea). By extension, (V ,T# ) is fanlike iff (V ,T# ) is
isomorphic to a fan.27 (END OF DEFINITION)

THEOREM: Let (V ,T# ) be a fann, then there is a surjective morphism from
Cantor space to (V ,T# ). (‘Cantor space is a universal fan’).

COROLLARY: Every fann is fanlike. Every fanlike space is the natural image of
Cantor space.

26This is also a result due to Brouwer.
27Any fann is fanlike so we need not define ‘fannlike’.
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PROOF: See A.3.5 where we give a self-contained proof. Compare the corollary
to the ‘unglueing’ that we did in example 2.2.0. (END OF PROOF)

2.2.2 Every compact metric space is homeomorphic to a fan If we define a
separable metric space to be compact whenever it is totally bounded and
complete (as is standard in BISH), then it is a well-known result that every
compact metric space is homeomorphic to a metric fan (a fan with a metric
respecting the apartness, and endowed with the metric topology, which a
fortiori is refined by the apartness topology).
Conversely, in [Waa1996] it is shown in INT that on a metric fan the apartness
topology coincides with the metric topology, and that every apartness fan
is metrizable. More general, in INT every star-finitary apartness spread is
metrizable. We retrieve this result for BISH in section 4.0.8.

2.3 MORPHISMS ON SPREADS AND SPRAIDS

2.3.0 Refinement versus trail morphisms 1 We return briefly to our discus-
sion of refinement morphisms versus trail morphisms. With spreads (which
derive from a tree) there is no need for trail morphisms. In fact a spread
(V ,T# ) is � -isomorphic to its trail space (V o,T#

o). Since Baire space is uni-
versal (2.2.0), we could develop a fruitful theory using only spreads and
refinement morphisms (as is done in INT). Studying refinement morphisms
also on spraids is therefore an enlargement of this fruitful theory. But when
working with spraids, we sometimes need trail morphisms as well.

Already for practical ease we wish to work with spraids such as σR and re-
finement morphisms. This is relevant also, we believe, for computational
purposes.28 We do not straightaway know any theoretical applications, but
the possibility to also use the � -lattice properties seems to good to pass up.
A relevant discipline in this respect could possibly be constructive (topologi-
cal) lattice theory, or perhaps even algebraic topology.

Therefore we take some time to show that for many important spraids a trail
morphism can already be directly represented by a refinement morphism.
This is especially relevant from the APPLIED perspective, we believe. There is
the usual drawback: it requires a bit more patience from our readers.

28We refer once more to the recommendations in [BauKav2009], which we follow.
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2.3.1 Unglueing of spraids To simplify things, we show that any spraid (V ,T# )
can be unglued in exactly the same manner as σR in paragraph 2.2.0. The
idea is to turn to the subspread of (V o,T#

o) formed by the ∝ -trails in (V, � )
(instead of looking at the spread of all trails).

DEFINITION: Let (V ,T# ) be a spraid derived from (V, #, � ). The unglueing of
(V ,T#) is the spread (V ∝,T#

o) derived from the pre-natural space (V ∝, #∗, �∗),
where V ∝ = {=0, . . . n−1∈V o |n∈N | is a ∝ -trail and n≥ 1 → lg(0)=1}.
(END OF DEFINITION)

We leave it to the reader to verify that unglueing a spraid (V ,T# ) amounts to
adding, for each ∈V, a finite number of copies of  such that each ∝ -trail
from © to  is represented by one of the copies. These copies all have lg()
as length in (V ∝, �∗).
For spraids, working with (V ∝,T#

o) is more elegant than working with (V o,T#
o),

which again seems relevant for computational practice. Notice also that if
we start with a spread (V ,T# ), then there is a trivial bijection between V and
V ∝, showing that spreads are already unglued.

2.3.2 Refinement versus trail morphisms 2 Now we can show that for many
important spraids a trail morphism can already be directly represented by a
refinement morphism. We illustrate this first with σR, our preferred represen-
tation of R.

PROPOSITION: Let ƒ be a o -morphism from σR to σR. Then there is a � -
morphism g from σR to σR such that ƒ ()≡Rg() for all ∈σR.

PROOF: We see ƒ as a � -morphism from σR

∝ to σR. For ∈σR of the form
[4s+2t+2 ,

4s++2
2t+2 ] where 1≤ ≤ 4 and t∈N, put b=[ s2t ,

s+2
2t ]. For all other ∈σR

let b=©R. Now for ∈σR there are finitely many ∝ -trails from ©
R to , say

b0, . . . , bn where each b is in σR

∝. Since the ƒ (b)’s all touch,
⋂


×ƒ (b) is in σR.

We put g() =
D

⋂


×ƒ (b). Then g thus defined is a � -morphism from σR to σR

such that ƒ ()≡Rg() for all ∈σR. (END OF PROOF)

COROLLARY: Let ƒ be a o -morphism from Rnt to Rnt. Then there is a � -
morphism g from Rnt to Rnt (in fact σR) such that ƒ ()≡Rg() for all ∈Rnt.

PROOF: For ∈RQ let h() be the (unique) smallest interval in σR such that
 �R h(). This determines a � -isomorphism h from Rnt to σR. Again, for
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∈σR ∝ put ƒ̃ ()=h(ƒ ()), which yields a o -morphism ƒ̃ from σR to σR. By the
proposition, ƒ̃ can be represented by a � -morphism g′. Now for ∈RQ simply
put g()=g′(h()) to obtain the required � -morphism g representing ƒ . (END

OF PROOF)

The proposition combined with paragraphs 3.4.3 and 4.0.10 illustrates that
for many complete metric spaces, we can find efficient spraid representa-
tions such that we can always work with refinement morphisms.

REMARK: One relevant property here is that for a finite intersection of ba-
sic dots we can find a basic dot of ‘small enough diameter’ which contains
the intersection in its interior. For our standard basic-open complete metric
spreads this is obvious, but these spreads are themselves not an efficient
representation. See 4.0.10. (END OF REMARK)

2.4 A DIRECT LINK WITH INTUITIONISM

2.4.0 Natural spaces mirror Brouwer’s spreads Our two goals in this section
are to establish fundamental properties of natural spaces, and to give a clas-
sical mathematician a simple picture of important intuitionistic results. For
the latter goal we establish that there is a constructive one-on-one corre-
spondence between Brouwer’s notion of spreads, and our notion of spreads
as natural spaces given by a tree (for sake of comparison let us call this no-
tion ‘natural spread’). Brouwer’s spread-functions correspond precisely to
natural morphisms between our natural spreads. The practical advantage
lies in the retrieval of many intuitionistic results for natural spaces.

We formulate the fundamental theorem in the language of [Waa1996]. To
avoid cumbersome mathematical structures, we do so on the meta-level.

META-THEOREM: Brouwer’s universal spread σω corresponds precisely to nat-
ural Baire space. Other intuitionistic spreads can all be seen as an apartness
spread (σ, #σ) which can be translated directly to a corresponding natural
spread (Vσ ,T# ), which is homeomorphic in INT to (σ, #σ) equipped with the
apartness topology T#σ . Spread-functions between two spreads correspond
precisely to � -morphisms between the two corresponding natural spreads.
Intuitionistic fans correspond precisely to our natural fans.
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PROOF: The theorem is self-evident for anyone familiar with intuitionistic
apartness topology, which was developed in [Waa1996]. For reasons of
space efficiency, we do not repeat all the relevant definitions here. (END

OF PROOF)

For CLASS, the theorem offers a quite direct translation of many results in
intuitionistic topology to the context of natural spaces (see the remark be-
low). In this monograph we also translate some intuitionistic results to BISH,
which is usually a bit more work. At the end of this section we translate a
result of Veldman, which has its place in the intuitionistic study of the Borel
hierarchy (see [Vel2008] and [Vel2009]).29 In chapter four, we translate an
intuitionistic metrization theorem.

REMARK: The ‘direct’ translations for CLASS often co-depend on a classically
valid axiom of INT called BT (‘Brouwer’s Thesis, or equivalently decidable-bar
induction BID) which we did not mention earlier, for simplicity. The validity
of BT has been questioned in other branches of constructive mathematics,
not in the least because Kleene showed that it fails in the branch of recur-
sive mathematics called RUSS. In RUSS the principal axiom is CT (derived
from ‘Church’s Thesis’) which states that every infinite sequence α∈NN is
computed by a known Turing-algorithm. Notice that this does not resemble
our description of the engineer/scientist taking ever-more refinable measure-
ments from nature.

Classical mathematicians are often unaware that compactness (more spe-
cific, the Heine-Borel property) of Cantor space fails in RUSS. This compact-
ness does however follow from BT, therefore compactness can be dealt with
elegantly in INT. In the past decades constructive mathematicians have put
much effort in developing a variety of constructive theories which respect
RUSS but still allow for a working theory of compactness. (END OF REMARK)

2.4.1 Brouwer’s Thesis, compactness and induction We discuss Brouwer’s
Thesis already here, although it more properly belongs in the next sections,
because it influences our presentation from here on. In fact one can see
BT as a transfinite induction scheme (countable-ordinal induction) combined
with the meta-insight that we can construct open covers of Baire space only
by such a transfinite induction procedure. That is, if Baire space also con-
tains sequences about which we know only finite initial segments at any

29Other results of Veldman on this hierarchy might also be translatable to our classically
valid setting, but we have not studied this.
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given point in time. This explains why BT fails in RUSS, since in RUSS we
have a lot of additional information about sequences (namely the algorithms
computing them) and we can use this information to construct non-inductive
covers of recursive Baire space. This follows from Kleene’s construction of an
infinite decidable subset of {0,1}∗ which contains no infinite recursive path
(the Kleene Tree, see 2.5.3 and [Bau2006]). We will need some definitions to
phrase BT.

DEFINITION: We use natural Baire space (N ,T#ω ), derived from (N∗, #ω , �ω).
Let A,B⊆N∗, then B is called a bar on A iff ∀∈ [A] ∃n∈N ∃b∈B [n�b],
where [A]=
⋃

∈A[]. Notice that a bar on A is the same as an open cover of
[A] consisting of basic open sets.

Next we introduce ‘genetic bars’ on N∗, using a form of countable-ordinal
induction.

G©
Ê The set {©ω} is a genetic bar on N∗.

G∝
Ê If for each n∈N we have a genetic bar Bn, then B={n? |∈Bn, n∈N}

is also a genetic bar on N∗.

Repeated application of the rules G©
Ê and G∝

Ê yields all genetic bars on N∗.
(END OF DEFINITION)

We believe this form of induction is constructively acceptable, and formulate
the appropriate axiom:

PGI The definition of genetic bars is valid. Moreover, let P be a property of
bars on N∗ such that:

G© The genetic bar {©ω} has property P.

G∝ If for each n∈N we have a genetic bar Bn with property P then the
genetic bar B={n? |∈Bn, n∈N} also has property P.

Then all genetic bars on N∗ have property P.

DEFINITION: Let C,D⊆N∗ be bars on N∗. We say that C descends from D iff
for each d∈D there is a c∈C with d�c. (END OF DEFINITION)

REMARK: This terminology makes sense if we picture Baire space as an in-
finite tree, which branches upward from its maximal element ©ω . Now ‘C
descends from D’ describes the picture of a bar D on N∗, such that below
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each element of D there is already an element of C (therefore C covers at
least what D covers). But we acknowledge that we could have called ©ω the
minimal element, reversing the � -notation. (END OF REMARK)

We can now formulate our version of BT: 30

BT PGI holds, and every bar on N∗ descends from a genetic bar on N∗.

An intuitionistic plea for BT can be give in the following way. The universe of
Baire space that we have in mind is inhabited by choice sequences arising
step by step in the course of time. This means that in general only the min-
imum of information about an element is known. For the author, the axiom
expresses that — given such a universe — the only one way to convince our-
selves that a subset B of N∗ is indeed a bar, is to show that it descends from
something that we can intuitively grasp as a bar, namely a genetic bar.

In fact the more precise analysis is that there are two basic methods that can
be employed in ascertaining the ‘bar’ status of a given subset B of N∗. The
direct method is to have B given as a genetic bar. The other method is to see
that B descends from a previously ascertained bar. These two methods put
together yield the method of checking whether B descends from a genetic
bar.

Kleene calls this aptly ‘reversing the arrows’. The genetic definition in fact
mirrors what our intuition tries to do when visualising an arbitrary bar. The
author has no trouble accepting this definition, and in this acceptance lies his
intuitive justification of PGI. Brouwer’s justification looks rather more com-
plex even when explained by Veldman, but we believe it to be essentially
the same as our presentation above. In [Kle&Ves1965], Kleene gives some
nice examples of bars descending from genetic bars which cannot be shown
to be genetic unless we prove e.g. that there are 99 consecutive 9’s in the
decimal expansion of π.

BT can be proved classically by contradiction as follows: suppose B is a
bar on N∗ which does not contain a genetic bar. For ∈N∗ write B for
{d∈N∗ |?d∈B}. Since B does not contain a genetic bar, ©ω is not in B.
Put b0=©ω . Then for at least one b=b1∈∝(b0) the bar Bb on N∗ does not
contain a genetic bar, meaning ©

ω 6∈Bb which implies b1 6∈B. Repetition of
this argument yields a shrinking sequence β=(bn)n∈N such that β evades B.
Contradiction, since B is a bar. Therefore B must contain a genetic bar, and
so trivially descends from a genetic bar.

30This version is easily seen to be equivalent to the version given in [Waa2005].
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REMARK: If one is willing to accept BT, then an elegant constructive theory of
compactness is possible for natural spaces from the ingredients presented
up to now. As stated earlier, this theory closely resembles intuitionistic re-
sults. The author believes that in physics, the (mathematics underlying the)
universe which we study resembles the setting of sequences arising step by
step without much further information. This is why he would especially invite
physicists to take notice of intuitionistic mathematics. (END OF REMARK)

For the rest of this monograph, we will not assume BT. Instead, we will in-
troduce inductive definitions which capture most of BT. The prize we gain is
that with these inductive definitions we can build a (limited) theory of com-
pactness also in RUSS. The price we pay is that this inductive machinery is
not easy, and tends to lead to somewhat involved proofs.

Another gain is perhaps more ‘bridging’ in character. Intuitionism has never
been very popular, in contrast maybe to BISH and constructive formal topol-
ogy. By presenting natural spaces as spraids and then developing inductive
definitions, we can hopefully illuminate intuitionistic concepts and results,
while still remaining in BISH.

2.4.2 Baire morphisms together do not form a natural space In our discus-
sion so far, we have highlighted that the class of natural spaces is large,
not to say vast. In fairness let us also state that there are important spaces
which cannot be represented as a natural space. In the appendix (see A.5.4)
we will comment on this shortly.

A revealing example in this respect is the space of all Baire morphisms, by
which we mean natural morphisms from Baire space to itself. Equivalently
(by thm. 1.2.2) we can see this as the space of all continuous functions from
Baire space to itself. The key for our development31, is that every Baire
morphism can be coded by an element of Baire space itself. We detail this
explicitly:

DEFINITION: We fix a bijection <� �> from N∗ to N, with inverse �> <� such
that for all , b∈N∗ we have <��> ≤ <� ? b�> . Using �> <� we can see
each α∈NN as a sequence of pairs of basic dots (�>n<� , �>α(n)<� )n∈N in
N∗×N∗. We say that α is a coded Baire morphism iff the so obtained set
{(�>n<� , �>α(n)<� ) |n∈N} is a Baire morphism (a natural morphism from
Baire space to itself).

31Which is indebted to Veldman’s expositions on intuitionism, see the bibliography.
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To transfer this idea to N =NNnt, remember that for p∈N we write p∗ to
denote the unique sequence α∈NN corresponding to p (see def. 2.0.2). So
p∗(m) then denotes α(m) for this α∈NN corresponding to p. Thus we look
on p in N also as a sequence of pairs of basic dots (�>n<� , �>p∗(n)<�)n∈N in
N∗×N∗. We say that p is a star-coded Baire morphism iff the so obtained
set {(�>n<� , �>p∗(n)<� ) |n∈N} is a Baire morphism.32

We define: Mor =
D
{p∈N | p is a star-coded Baire morphism}. For ƒ in Mor,

write ƒ̃ for the ƒ -induced Baire morphism. Now if ƒ#ωg for ƒ , g∈Mor then
the induced morphisms ƒ̃ , g̃ define different continuous functions from Baire
space to itself. (Therefore, by slight abuse of notation, we also write: ‘let ƒ̃
be a morphism, determine the corresponding ƒ ∈Mor’.) (END OF DEFINITION)

The next theorem, slightly modified, is from [Vel1981] (also read [Vel2008],
[Vel2009]), as is its elegant proof (based on a Cantorian diagonal argument):

THEOREM: (Wim Veldman) Let F be a Baire morphism for which Ran(F)⊆Mor.
Then there is an ƒ ∈Mor such that ƒ#F(p) for every p in N .

COROLLARY: Mor cannot be represented by a natural space; the space of
continuous functions from Baire space to itself cannot be represented by a
natural space (‘the space of continuous functions from Baire space to itself
is not spreadlike’).

PROOF: Let p be in N , then F(p)∈Mor determines a Baire morphismàF(p).
Therefore for each p∈N , we can send p toàF(p)(p), and this function is
given by a morphism z. We now construct a Baire morphism ƒ̃ such that
ƒ̃ (p)#z(p)=àF(p)(p) for all p∈N .
Since z is a morphism, the set B = {b∈N∗ |z(b)≺©ω∧ ∀c � b[z(c)=©ω]}
(the set of basic dots on which z determines the first basic dot of the image)
is decidable. We take care to ensure that ƒ̃ (b)#z(b) for all b∈B. Then for
 6∈B: if there is b∈B with b≺, we put ƒ̃ ()=©ω , and otherwise there is a c

and a b∈B with =b ? c, and we put ƒ̃ ()= ƒ̃ (b) ? c.
Now for p in N , we see that the morphismàF(p) is apart from ƒ̃ , because
àF(p)(p) = z(p)# ƒ̃ (p) by construction of ƒ̃ . For ƒ̃ , determine the corresponding
ƒ ∈Mor, then F(p)#ω ƒ for all p∈N . (END OF PROOF)

32For each basic dot �>n<� , the image under the morphism is the basic dot �>p∗(n)<� .
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2.5 COMPACTNESS, BROUWER’S THESIS AND INDUCTIVE DEF-
INITIONS

2.5.0 Compactness in the absence of Brouwer’s Thesis From this section on
we carry out the idea mentioned in 2.4.1 (where BT was defined): to develop
a theory of compactness using inductive definitions, in the absence of BT.
We discuss the relationship between natural topology and some other ap-
proaches to constructive mathematics, especially regarding compactness.
We do not in any way claim final wisdom, since these are complex issues.33

2.5.1 Pointwise, pointfree or both? We take up some extra space and time to
show that natural topology suits both the pointwise and pointfree perspec-
tive. In the previous chapters the pointwise approach was our central focus.
But in the absence of Brouwer’s Thesis BT, the pointfree approach is neces-
sary for inductive definitions if one wishes to reduplicate compactness-like
results. We concentrate on ‘basic dots’ but at the end of the day we also
have the usual separable topological spaces and the pointwise perspective
at our disposal.

For clarity we repeat that the results in this paper are derived within BISH,
and that these results are mostly translations of existing intuitionistic results.
Intuitionistic results have been called non-effective by some authors, but we
believe that the difference lies mainly in the acceptance of induction axioms
versus the incorporation of the induction in all the definitions. We consider
this more a question of style than a paramount distinction.

2.5.2 Introduction to constructive compactness issues To understand com-
pactness issues we turn to Cantor space ({0,1}N). In CLASS and INT, Cantor
space is a universal separable compact space (a result due to Brouwer). By
this we mean that every separable compact space is the continuous image
of {0,1}N. This also holds in BISH, but in BISH the definition of compactness
is a metrical one, see below.

Cantor space can be pictured as a dually branching subtree of Baire space
NN, the infinitely branching tree. Brouwer’s notation for Cantor space was σ2 ,
and for Baire space σω. In Brouwer’s terminology, every finitely branching

33Also there are many varieties of constructive and semi-constructive topology and the
author’s knowledge of and insight in these varieties is very limited.
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subtree of σω is called a fan . Brouwer’s compactness axiom FT (the Fan
Theorem) states that every cover of a fan has a finite subcover (a form of
the Heine-Borel property, classically equivalent to König’s lemma).

However, in recursive mathematics (RUSS) there is no immediate topologi-
cal definition of ‘compact’. In RUSS, Baire space is in fact homeomorphic to
Cantor space, due to the axiom CT (see A.4.9) Therefore in our theory of nat-
ural topology, the compactness of Cantor space34 cannot be shown unless
we adopt Brouwer’s FT, or strengthen the definition of ‘cover’ to ‘inductive
cover’ (thereby excluding many interesting non-inductive covers in RUSS). FT
can be derived from BT, and so also holds in CLASS. Therefore our descrip-
tion of natural spaces for a classical mathematician leads to results closely
resembling intuitionism. BT fails in RUSS, from which the picture often is
drawn that RUSS and INT are incompatible.

Bishop, who developed a neutral constructive stance with Bishop-style math-
ematics (BISH), thought that Brouwer’s motivation for BT was mystical (not-
withstanding the simplifications offered by Kleene in [Kle&Ves1965]). He
tried to work around the difficulties associated with topological compactness
by only defining ‘metrical compactness’ (meaning ‘totally bounded and com-
plete’, for metric spaces). In the light of the situation in RUSS, this seems a
good neutral solution and it has a large number of nice applications (see
[Bis&Bri1985], [Bri&Vî̧t2006]). But Bishop also wanted to obtain that con-
tinuous functions are uniformly continuous on compact spaces, and being
unable to prove this by lack of a compactness axiom, he added this property
to the definition of continuous function. In [Waa2005] it is shown that this is
practically equivalent to the adoption of FT (thereby BISH somewhat loses its
neutral stance, and veers towards intuitionism). In reaction to [Waa2005], in
[Bri&Vî̧t2006] the definition of ‘continuous function’ has been modified back
to the usual epsilon-delta one.

In formal topology a way of dealing with compactness is to look at what
we will call ‘inductive covers’ and ‘inductive morphisms’, using a form of
transfinite countable-ordinal induction. It is a nice solution which in a sense
incorporates BT already in the definitions. In this way, compactness results
of formal topology also have a recursive interpretation in RUSS, which is an
attractive feature shared with BISH. But as in BISH, the non-inductive non-
compactness of Cantor space in RUSS then may be ignored, and formal topol-
ogy in this way also seems to veer towards intuitionism.35

34The property ‘every open cover has a finite subcover’ (the Heine-Borel property).
35The author finds the literature on formal topology hard to read, and to avoid mistakes

refrains from a more precise mathematical comparison.
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2.5.3 Natural Cantor and Baire space are isomorphic in RUSS From a well-
known basic result from [Kle&Ves1965] we derive the equally well-known
result that in RUSS natural Cantor space is isomorphic to natural Baire space.

THEOREM: In RUSS natural Cantor space is isomorphic to natural Baire space.

PROOF: From [Kle&Ves1965] we can directly define a decidable countable
subset36 Kbr = {kn |n∈N}⊂{0,1}∗ such that kn�ωkm implies n=m for all
n,m∈N and such that in RUSS {[k] |k∈Kbr} is an open cover of (C,Tnt) which
has no finite subcover. We use Kbr to define an isomorphism ƒ in RUSS from
(N ,T#ω ) to (C,Tnt) as follows.

Put ƒ (©ω) =©ω . Then let  = 0, . . . , m∈N∗. Put ƒ () = k0 ? k1 ? . . . ? km .

The verification that ƒ is an isomorphism is not difficult and left to the reader.
(END OF PROOF)

The theorem shows that with our definitions so far we cannot hope to define a
natural-topological notion of compactness in RUSS. In formal topology, this is
partly resolved by using a form of transfinite induction.37 However, pointwise
problems in BISH related to these compactness issues persist (see 3.4.0). Yet
we will adopt this transfinite-induction strategy as well, for elegance and for
purposes of informal comparison.

2.5.4 A model of INT as part of RUSS Usually, INT is seen as being at odds with
RUSS, because of the compactness troubles in RUSS. However, it is also pos-
sible to informally model INT as a two-player game in RUSS. In this model,
one can see INT as the part of RUSS where all covers are inductive. BT then
becomes an elegant way of saying that we restrict our recursive world to
all things inductive. In this model we can prove the intuitionistic continuity
principle CP. This model has similarities to Weihrauch’s TTE (type-two effec-
tivity), but we are no expert and refrain from making direct comparisons.

We present the model of INT as part of RUSS in section 4.2.4. This model
might give an argument for physics why FT is more valid than ‘not FT’, even

if CTphys is seen to hold. Here CTphys stands for the statement that nature
can only produce recursive sequences. Since CTphys is as of yet undecided,
RUSS might be a relevant mathematical model for physics, and these com-
pactness issues seem worthy of physicists’ attention as well.

36derived from what Andrej Bauer in [Bau2006] aptly calls the Kleene Tree.
37Which for natural spaces seems equivalent to BT, see prp. 3.1.0.
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In BISH and in constructive formal topology, a preference for FT sometimes
seems cloaked in definitions. This leads to an exclusion of (parts of) RUSS

which is not always easy to spot. We believe it more fruitful for our founda-
tional discussion here to give RUSS a more equal place, and then study the
arising topological structures in the light of different axiom systems. This is
one reason for developing the concepts ‘neutrally’ in the previous chapters.

2.5.5 Compactness and inductivity So now we need to find a perspective on
compactness and inductivity. We adopt from formal and pointfree topology
the notion of (what we call) ‘inductive covers’ and ‘inductive morphisms’. For
natural spaces, Brouwer’s induction scheme in our eyes is more elegant and
wieldy. Therefore we derive our inductive covers from ‘genetic bars’ as de-
fined in 2.4.1, only slightly generalized to arbitrary spraids. Thus emulating
formal topology in a simplified way, we can interpret compactness in RUSS

as well. One may however ask oneself, after all the work has been done,
whether any real benefit has been gained over intuitionism. For one answer,
one could look at the hopefully better understanding of the relevant issues
and the relationship between the various branches of constructive mathe-
matics. As a second answer, we also phrase a strong support of intuitionistic
mathematics in paragraph A.1.2.



CHAPTER THREE

Inductivizing our definitions

We develop genetic induction based on a simplification of bar in-
duction. Inductive covers thus defined are equivalent to ‘formal
inductive covers’ coupled with a formal-topology style of induction.

Every subfann (including Cantor space and the real interval [α, β])
has the Heine-Borel property for inductive covers (of that fann in its
mother spraid).

Inductive morphisms respect inductive covers; they are unifor-
mously continuous on metric (sub)fanns. ContinuousBIS functions
from R to R are representable by an inductive morphism. The state-
ment that continuousBIS functions from R to R+ are representable
by an inductive morphism from Rnt to Rnt+ is equivalent to FT. Point-
wise problems for BISH persist, related to the reciprocal function and
compactness (the relevant example of ContraCantor space is given
in the appendix).

We discuss Kleene’s realizability and other ways to define inductive
morphisms.

Finally we define (in)finite-product spaces, and prove a BISH version
of Tychonoff’s theorem.
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3.0 INDUCTION IN FORMAL-TOPOLOGY STYLE

3.0.0 Bootstrap method Our development strategy has a drawback: we al-
ready gave the basic definitions, and now we want to build an inductive
theory. This involves revisiting the earlier basic definitions, to ‘inductivize’
them. We again ask some patience from the reader.

3.0.1 Basic (open) covers and per-enumerable open covers We begin our
development of inductive covers by defining a basic covering relation �

on sets of basic dots.

DEFINITION: Let (V ,T# ) be a natural space with corresponding (V, #, � ). Let
A,B⊆V. We say that B is a basic cover of A, notation A� B iff for all ∈ [A] =
{y∈V | ∃∈A[y�]} there is a b∈B with �b. In other words, iff [A]⊆ [B].
Notice that � is transitive. By extension we say that B is a basic cover of V
iff {©}� B. Basic covers need not correspond with open sets in the topology
(but for Baire space the distinction is moot), so for A� B we say that B is a
basic open cover of A if in addition [[B]] is open in (V ,T# ), and then we write
A�◦ B. (END OF DEFINITION)

Notice that this definition is not ‘pointfree’, it relies essentially on the points
in V. The way in which we have acquired the insight ‘for all ∈ [A] there is
a b∈B with �b’ is left unspecified. This means that in RUSS covers de-
rived from the Kleene Tree are also basic covers, and so compactness of
Cantor space cannot be derived with regard to basic covers without extra
axioms. What does hold in RUSS as well as in INT and CLASS is that every
open cover of Baire space is refined by an enumerable basic open cover of
Baire space, which entails a form of the Lindelöf property (‘every open cover
has an enumerable refinement’).38 To be able to work with this important
Lindelöf property in BISH as well, we translate some definitions of [Waa1996]
to our setting here.

DEFINITION: Let (V ,T# ) as above, and let U ⊂V be open in (V ,T# ). We say
that U is enumerably open iff there is an enumerable subset U of V such
that U = [U]. Let ϒ={Un |n∈N}={[Un] |n∈N} be an enumerable collection
of enumerably open subsets Un= [Un] of V, then we say that ϒ is a per-

38See axiom BDD in A.4.12.
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enumerable open collection . If in addition ϒ is an open cover of a subset W
of V, then we say that ϒ is a per-enumerable open cover of W in (V ,T# ).
(END OF DEFINITION)

Per-enumerable covers have nice properties. Per-enumerable covers of met-
ric spaces for instance allow a subordinate partition of unity, as well as
a star-finite refinement (see [Waa1996]). These are powerful topological
tools, which use the paracompact properties of metric spaces. Also, per-
enumerable covers form a connection between basic dots in natural spaces
and basic opens of formal topology. For example in Rnt, the open real in-
terval (0,1), which is represented by a basic open in formal topology, is
enumerably open since it is represented by the enumerable set of basic dots
{[p, q]∈RQ |0<p<q< 1}.

The next steps in our development concern inductive basic covers. If we
specify covers inductively, we capture a form of compactness, namely the
Heine-Borel property that inductive covers of a fann have a finite subcover.

3.0.2 Formal inductive covers To facilitate a connection with formal topology,
we first define a ‘formal’ inductive covering relation Ê , using a form of trans-
finite countable-ordinal induction which is generally considered constructive.
We later give a more concise induction scheme which is in essence due to
Brouwer.

DEFINITION: Let b, c∈V and A,B,C⊆V as previously, we define:

Ind1
Ê b�c implies {b}ÊV{c}.39

Ind2
Ê if for all ∈A we have {}ÊVB, then AÊVB.

Ind3
Ê if AÊVB⊆C then AÊVC.

Ind4
Ê if AÊVBÊVC then AÊVC.

Ind5
Ê {b}ÊV{d |d≺b}.

Repeated application of the rules Ind1
Ê through Ind5

Ê yields all sets D,E⊆V for
which DÊVE.40 We say that B is a formal inductive cover of A w.r.t. (V ,T# ),
iff AÊVB (as an exercise the reader may prove by induction that AÊ B implies

39One can replace this with the seemingly stronger rule: if A� B and B is finite, then AÊ B.
We believe it equivalent, but this equivalence is a bit circuitous, depending on Baire space as
universal space, so one may prefer this stronger rule.

40This is transfinite countable-ordinal induction
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A� B). If the context space is clear, we omit the subscript and simply write
AÊ B. By extension we say that B is a formal inductive cover of V iff {©}ÊVB.
(END OF DEFINITION)

We state the appropriate axiom which from now on we take to hold:

PFI (Principle of Formal Induction): For any natural space (V ,T# ), the def-
inition of formal inductive covers is valid. Moreover, let P be a property of
pairs of subsets A,B of V, such that:

Ind1 b�c implies P({b},{c}) for b, c∈V.

Ind2 if for all ∈A we have P({}, B), then P(A,B).

Ind3 if P(A,B) and B⊆C then P(A,C).

Ind4 if P(A,B) and P(B,C) then P(A,C).

Ind5 P({b},{d |d≺b}) for all b∈V.

Then AÊ B implies P(A,B) (for A,B⊆V).

To show how things work in this formal-topology style of induction, we de-
duce the Heine-Borel property for formal inductive covers of Cantor space
-on its own- as a corollary to the following proposition:

PROPOSITION: In C, let A,B⊆{0,1}∗ such that AÊ B. Then for all ∈A there
is a finite C⊆B such that {}Ê C.

PROOF: By formal induction, using as property P(A,B): ‘for all ∈A there is a
finite C⊆B such that {}Ê C’. We check that Ind1 through Ind5 hold for P:

Ind1 trivially, by Ind1
Ê, b�c implies P({b},{c}) for b, c∈{0,1}∗.

Ind2 if for all ∈A we have P({}, B), then for ∈A we know: for all ′∈{}
there is a finite C′⊆B such that {′}Ê C′. It trivially follows that for all
∈A there is a finite C⊆B such that {}Ê B.

Ind3 if P(A,B) and B⊆C then for all ∈A there is a finite D⊆B such that
{}Ê D. Since B⊆C we see that P(A,C).

Ind4 if P(A,B) and P(B,C) then for arbitrarily given ∈A there is a finite E⊆B
such that {}Ê E. Since P(B,C), we also have that for e∈E there is a
finite De⊆C such that {e}Ê De. But then, taking D=

⋃

e∈EDe, we see
that D⊆C is finite and {}Ê EÊ D, so by Ind4

Ê also {}Ê D. Since  is
arbitrary we conclude P(A,C).
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Ind5 let b∈{0,1}∗, we wish to show P({b},{d∈{0,1}∗ |d≺b}). For this
we take the finite subset C={b?0, b?1} of B={d |d≺b}, and we see
that {b}Ê C, since BÊ C by Ind2

Ê and Ind1
Ê, and {b}Ê B by Ind5

Ê, and so
{b}Ê C by Ind4

Ê.

Therefore by PFI, for any A,B⊆{0,1}∗ such that AÊ B we have P(A,B). In
other words: for all ∈A there is a finite D⊆C such that {}Ê D, so we are
done. (END OF PROOF)

COROLLARY:

(i) In C, let A⊆{0,1}∗ be finite and B⊆{0,1}∗ such that AÊ B. Then there
is a finite B′⊆B such that AÊ B′.

(ii) In C, let B⊆{0,1}∗ be a formal inductive cover of C, then B has a finite
subcover. (Heine-Borel property for formal inductive covers of Cantor
space).

PROOF: Ad (i): In C, by the theorem, for all ∈A there is a finite B⊆B such
that {}Ê B. Since A is finite, we can take B′=

⋃

∈AB.
Ad (ii): take A={©ω} and use (i) above. (END OF PROOF)

3.1 GENETIC INDUCTION IN BROUWER’S STYLE

3.1.0 Inductive covers following Brouwer’s Thesis We could continue devel-
oping the theory in this formal-topology style, but we feel that for the setting
of natural spaces, Brouwer’s approach is more precise and concise. There-
fore we develop an alternative notion of ‘inductive cover’ for spraids (and
prove that it amounts to the same as ‘formal inductive cover’). To facilitate
the connection with intuitionism, we adopt (and adapt) intuitionistic termi-
nology. To be foundationally clear, we formalize our countable-ordinal induc-
tion scheme as an axiom (PGI∗). The advantage to this alternative approach
is that definitions and proofs become shorter, and that we can more easily
adopt results from intuitionism.

We generalize the Baire space definition 2.4.1 of genetic bars, genetic induc-
tion and BT to arbitrary spraids. (Remember from 2.2.0 that without loss of
generality a natural space is given by a spraid.).



Genetic induction in Brouwer’s style 60

DEFINITION: Let (V ,T# ) be a spraid with corresponding (V, #, � ) (so (V, � ) is
a trea). Let B⊆V. If B is a basic cover of (V ,T# ) (see def. 3.0.2), then we say
that B is a bar on V (in (V ,T# ), equivalently {©}� B. We remind the reader
that for any  in V, the basic subspraid V={b∈V |b�}={}� is formed
by putting its maximal dot as ©=.41 We extend this notation by putting
C� =
⋃

c∈CVc for any subset C⊆V. Also kindly remember that for  in V, we
write ∝() for {b∈V |b∝}.

Now we inductively define genetic bars on basic subspraids V of (V ,T# ) as
follows:

G©
Ê For ∈V the set {©} is a genetic bar on V.

G∝
Ê If for ∈V and all b∈∝(), Bb is a genetic bar on Vb, then

⋃

b∈∝()Bb is
a genetic bar on V.

Repeated application of the rules G©
Ê and G∝

Ê yields all genetic bars on basic
subspraids of (V ,T# ).42 (END OF DEFINITION)

We state the appropriate axiom which from now on we take to hold:

PGI∗ (generalized Principle of Genetic Induction): For any spraid (V ,T# ),
the definition of genetic bars is valid. Moreover, let P be a property of bars
on basic subspraids of (V ,T# ) such that:

G© For ∈V, the genetic bar {©} on V has property P.

G∝ If for ∈V and all b∈∝(), Bb is a genetic bar on Vb with property P,
then the genetic bar

⋃

b∈∝()Bb on V has property P.

Then all genetic bars on basic subspraids of (V ,T# ) have property P.

DEFINITION: Let (V ,T# ) as above, with ∈V, and let B,C,D⊆V be bars on V.
Then C descends from D iff for all d∈D there is c∈C with d�c (iff D⊆C� ).
We say that B is an inductive bar on V (and an inductive cover of V) iff
there is a genetic bar G on V such that B descends from G. By extension we
say that B is an inductive cover of {}, notation {}Ê∝

V
B or simply {}Ê∝ B

when the context is clear. Notice that B need not be a subset of V.
Next, let E, F⊆V. We say that E is an inductive cover of F, notation FÊ∝

V
E, iff

for all ∈F we have {}Ê∝
V
E. We also write FÊ∝ E when the context is clear.

41Taking =©V gives the entire spraid V ((V ,T# )) itself.
42Again this is countable-ordinal transfinite induction. Also note that the version for Baire

space is even more elegant. But using this more elegant form requires the encoding of all
entities as natural numbers, which we have waived.
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From a pointwise perspective (see def. 3.0.1) a per-enumerable open cover
ϒ={[Un] |n∈N} of a subspraid W⊆V derived from (W, #, � ) is called an
inductive open cover of W iff WÊ∝

W

⋃

n∈NUn.Then, for an arbitrary subset
A⊆W, we also say ϒ is an inductive open cover of A. See A.5.6 for additional
comments. (END OF DEFINITION)

3.1.1 Genetic and formal covers coincide on spraids We can show that for
spraids there is no distinction between inductive covers (obtained through
genetic bars in Brouwer’s style) and formal inductive covers (defined in 3.0.2
in formal-topology style).

THEOREM: Let (V ,T# ) as above, and let E, F⊆V. Then FÊ E iff FÊ∝ E.

PROOF: See appendix A.3.6, we use PFI and PGI∗. (END OF PROOF)

REMARK: This will allow us to use Ind1
Ê through Ind5

Ê as properties of Ê∝ as
well. The theorem hopefully also partly clarifies the relation between INT and
formal topology. As explained earlier, we prefer genetic induction on spraids.
(END OF REMARK)

3.1.2 Brouwer’s Thesis generalized to spraids We do not adopt BT in our
narrative, yet we cannot escape generalizing this axiom to arbitrary spraids:

BT∗ PGI∗ holds, and every bar on a spraid (V ,T# ) descends from a genetic
bar on (V ,T# ).

The defense of BT∗ derives straightforwardly from the defense of BT given
in 2.4.1. BT∗ also follows from BT, and therefore holds in CLASS and INT.

We see BT∗ as a deep insight in the nature of how we can construct bars at
all, if we have to deal with infinite sequences (of basic dots) about which at
any given time we know only initial finite segments. BT∗ fails in RUSS since
in RUSS we have a finite algorithm for each infinite sequence, giving us far
more knowledge of such sequences than in the limited-information setting
that Brouwer had in mind. We transpose Brouwer’s setting to RUSS in section
4.2.4, to show what we mean.

PROPOSITION: Let (V ,T# ) be a spraid derived from (V, #, � ). Then BT∗ im-
plies that every cover of V is inductive.
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REMARK: The proof is trivial. The proposition underlines that if we accept
BT∗ we can simply work with basic covers and skip the inductivizing of ba-
sic definitions. The resulting theory is common ground of CLASS and INT,
and elegant. The genetic induction scheme remains essential in this theory
though, so not all the work done here is superfluous if one accepts BT∗. Us-
ing PFI and theorem 2.2.0 (‘every natural space is spreadlike’) we obtain the
following corollary. (END OF REMARK)

COROLLARY: Let (V ,T# ) be a natural space derived from (V, #, � ). Then BT∗

(with PFI) implies that every cover of V is formal-inductive.

3.1.3 Genetic bars are decidable As a first exercise in genetic induction, we
prove that a genetic bar on a spraid (V ,T# ) is a decidable subset of the set
of basic dots V. 43

PROPOSITION: Let (V ,T# ) be a spraid, with corresponding (V, #, � ). If B is a
genetic bar on a basic subspraid V of (V ,T# ), then B is a decidable subset
of V.

PROOF: By genetic induction, using PGI∗:

G© For ∈V, the genetic bar {©} on V is a decidable subset of V.

G∝ For ∈V, let for all b∈∝(), Bb be a genetic bar on Vb which is also a
decidable subset of Vb. Then

⋃

b∈∝()Bb is a genetic bar on V which is
a decidable subset of V since for c in V the set D={b∈∝() |c�b} =
{b∈∝() |c∈Vb} is finite, so we can determine if c∈

⋃

b∈DBb or not. And
c∈
⋃

b∈∝()Bb is equivalent to c∈
⋃

b∈DBb.

Therefore all genetic bars on basic subspraids V of (V ,T# ) are decidable
subsets of V. (END OF PROOF)

REMARK: Genetic bars on spreads are decidable thin bars, where a thin bar is
a bar B for which if ∈B and b≺ then b 6∈B. With BT one can also show the
converse, that every decidable thin bar is genetic.44 On spraids, due to the
glue, genetic bars need not be thin. We will show that we can unglue genetic
bars also. (END OF REMARK)

43This reflects our preference for genetic bars as a vehicle for countable-ordinal induction,
since we feel that genetic bars have an intuitively manageable complexity.

44See [Waa2005], or do it yourself (nice exercise).
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3.2 INDUCTIVE HEINE-BOREL FOR (SUB)FANNS

3.2.0 Inductive Heine-Borel for fanns As a second exercise in genetic induc-
tion, we first show an inductive Heine-Borel property for fanns, considered as
natural space on their own. This can also be considered an inductive version
of the fan theorem FT.

THEOREM: (FT∝ ) Every genetic bar on (a basic subspraid of) a fann (V ,T# )
derived from (V, #, � ) is finite.

PROOF: Using genetic induction:

G© For ∈V, the genetic bar {©} on V is finite.

G∝ For ∈V, if for all b∈∝(), Bb is a finite genetic bar on the fann Vb , then
⋃

b∈∝()Bb is a finite genetic bar on V since ∝() is finite since (V ,T# )
is a fann.

Therefore all genetic bars on basic subspraids of (V ,T# ) are finite. (END OF

PROOF)

COROLLARY: (Inductive Heine-Borel for fanns) Every inductive cover of a fann
(V ,T# ) has a finite subcover, and (from the pointwise perspective:) every
inductive open cover of (V ,T# ) has a finite open subcover.

PROOF: By the theorem, every inductive cover C of V descends from a finite
genetic bar B (meaning: for all b∈B there is a c∈C with b�c), so we find
a finite subset C′ of C which is already a basic cover of V. From the point-
wise perspective, let ϒ={[Un] |n∈N} be an inductive open cover of V, then
C=
⋃

n∈NUn is an inductive cover of V (see def. 3.1.0), therefore we find a
finite C′={c | ≤N}⊆C which is a basic cover of V. For each ≤N we can
determine an n such that c∈Un , and so {[Un] | ≤N} is a finite open cover
of V. (END OF PROOF)

3.2.1 Inductive Heine-Borel for subfanns (including the real interval [α, β])
Mostly however, we are interested in fanns as subspraids of larger spaces.
We obtain an inductive Heine-Borel property for subfanns as the corollary of
a basic proposition about genetic bars on subspraids:
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PROPOSITION: Let (W ,T# ) be a subspraid (derived from (W, #, � )) of a spraid
(V ,T# ) derived from (V, #, � ). Let ∈W and let B be a genetic bar on V.
Then B contains a genetic bar on the basic subspraid W of (W ,T# ).

PROOF: By genetic induction:

G© B={©}, then we are done.

G∝ Else, B=
⋃

b∈∝()Bb where for each b∈∝() the genetic bar Bb on Vb is
such that b∈W implies that Bb contains a genetic bar Cb on Wb. This
means that C=

⋃

b∈∝()∩WCb is a genetic bar on W contained in B.

(END OF PROOF)

COROLLARY:

(i) If E⊆W and F⊆V and EÊ∝
V
F then EÊ∝

W
(F�∩W).

(ii) (Inductive Heine-Borel for subfanns, HB∝ ) If (W ,T# ) is a subfann (de-
rived from (W, #, � )) of a spraid (V ,T# ), and C is an inductive cover of
W in (V ,T# ), then C contains a finite subcover of W in (V ,T# ). From the
pointwise perspective, if ϒ is an inductive open cover of W in (V ,T# ),
then ϒ contains a finite open cover of W in (V ,T# ).

PROOF: Ad (i): Let EÊ∝
V
F, then for e∈E there is a genetic bar B on Ve such that

F descends from B, which means that B⊆F� . By the proposition B contains a
genetic bar C on We, and trivially C⊆ (F�∩W). Therefore {e}Ê∝

W
(F�∩W) and

since e is arbitrary we see that EÊ∝
W
(F�∩W).

Ad (ii): Determine c=©W ∈V. Under conditions as stated, there is a genetic
bar B on Vc such that C descends from B. By the proposition, B contains a
genetic bar B′ on the fann Wc=W which forms (W ,T# ). By theorem 3.2.0 B′

is finite. Since B′⊆B and C descends from B, we find that for all b∈B′ there
is a c∈C with b�c. So we find a finite C′⊆C such that C′ is a cover of W (in
(V ,T# )).
From the pointwise perspective, let ϒ={[Un] |n∈N} be an inductive open
cover of W, then C=

⋃

n∈NUn is an inductive cover of W (see def. 3.1.0),
therefore we find a finite C′={c | ≤N}⊆C which is a basic cover of W. For
each ≤N we can determine an n such that c∈Un , and so {[Un] | ≤N} is a
finite open cover of W in (V ,T# ). (END OF PROOF)

REMARK: From this we conclude that for α < β∈R the real interval [α, β]⊂Rnt
has the inductive Heine-Borel property, also from the pointwise perspec-
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tive.45 This because it is fairly easy to indicate a finitely branching full sub-
trea W of (σR , �R ) such that [α, β]= [[W]]. Therefore, any inductive (open)
cover of [α, β] is an inductive (open) cover of the subfann W derived from
W, and so contains a finite (open) cover of [α, β]. (END OF REMARK)

3.3 INDUCTIVE MORPHISMS

3.3.0 Inductive morphisms: definition Having established some basic prop-
erties of inductive covers, we turn to inductive morphisms. Inductive mor-
phisms are those morphisms which respect inductively acquired covers, in-
versely (looking at the pre-image). Therefore they inversely preserve in-
ductive Heine-Borel properties. In metric spaces this implies that inductive
morphisms are uniformly continuous on compact subspaces.

In order to deal with trail morphisms elegantly, we turn to the unglueing of
(V ,T# ). But the reader can safely concentrate on refinement morphisms, as
we show later on.

DEFINITION: Let ƒ be a � -morphism between the spraids (V ,T# ) and (W ,T#2 ),
derived from (V, #, � ) and (W, #2 , �2). Let g be a o -morphism from (V ,T# )
to (W ,T#2 ) (so g is a � -morphism from (V ∝,T#

o) to (W ,T#2 ))
46. Recall the

definition of id∗ in the proof of theorem 1.1.4.

(i) For c∈W put ƒ
←
(c)={b∈V | ƒ (b)�2c}, for C⊆W put ƒ

←
(C) =

D

⋃

c∈C ƒ
←
(c).

(ii) For c∈W put
←
g∗(c) = id∗(

←
g(c)) ={b∈V |∃b′∈V ∝[id∗(b′)=b∧g(b′)�2c},

for C⊆W put
←
g∗(C) =D
⋃

c∈C
←
g∗(c).

(iii) We call ƒ resp. g an inductive morphism iff for any genetic bar G on W

we have that ƒ
←
(G) resp.

←
g∗(G) contains a genetic bar H on V.

(iv) If the context is clear, we also simply write
←
g for

←
g∗.

(END OF DEFINITION)

45A similar pointfree result is proved in [Neg&Ced1996] for the formal interval [α, β]. The
author hasn’t come across a general proof of the Heine-Borel property for ‘fanlike’ formal-
topological subspaces, but his knowledge of formal topology is limited. A related monograph
in many aspects is [M-Löf1970].

46Any � -morphism from (V o,T#
o) to (W ,T#2 ) is determined by its restriction to (V ∝,T#

o).
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PROPOSITION: With notation as above, we have that g is an inductive trail
morphism iff g is inductive as a � -morphism from (V ∝,T#

o) to (W ,T#2 ).

PROOF: In the appendix A.3.7 we show more, namely that genetic bars on
V correspond to genetic bars on V ∝ in a precise way. We could call this the
unglueing of genetic bars on V. (END OF PROOF)

The proposition together with its proof in A.3.7 shows that we can safely re-
strict ourselves from now on to refinement morphisms. If at any time we
need to use (inductive) trail morphisms, then we know that there is a direct
correspondence between (inductive) trail morphisms on (V ,T# ) and (induc-
tive) refinement morphisms on (V ∝,T#

o). This explains our next:

CONVENTION: From now on, unless stated otherwise explicitly, our morphisms
are refinement morphisms. (END OF CONVENTION)

Next we intend to show that if ƒ is an inductive morphism between the
spraids (V ,T#1 ) and (W ,T#2 ), then AÊ∝

W
B implies ƒ

←
(A)Ê∝

V
ƒ
←
(B), for subsets

A,B⊆W. This is relatively straightforward, if we first tackle a few extra de-
tails about genetic bars (which are nice enough in their own right).47

3.3.1 Genetic bars are extendable and reducible Another basic property of
genetic bars is that for c�∈V we can reduce a genetic bar on V to a
genetic bar on Vc, and vice versa if we have a genetic bar on Vc then we can
expand it to a genetic bar on V. We need some minor technicalities for this.

LEMMA: Let (V ,T# ) be a spraid with corresponding (V, #, � ). Let ∈V, then
for all n∈N the set Vn={b∈V | lg(b)= lg()+n} is a genetic bar on V.

PROOF: By induction on n∈N . If n=0 then V
n={}={©} so we are done.

Suppose the lemma holds for given n (and for all ∈V), then we show it
holds for n+1 as well. For then we know that for each c∈∝() the set Vcn

is a genetic bar on Vc. And so by G∝
Ê (see def. 3.1.0) Vn+1=

⋃

c∈∝()Vc
n is a

genetic bar on V. (END OF PROOF)

For c≺∈V, the basic subspraid Vc is of course covered elementarily by {}

47One reason to to proceed like this is once more to keep our concepts intuitively manage-
able. Instead of using ‘for all subsets A,B such that AÊ∝ B’ we only use decidable genetic
bars. But it also provides for shorter proofs.
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which in this respect fulfills the same maximal role as {©c}={c}. But (for
reasons of elegance) {} is not a genetic bar on Vc. We resolve this by
introducing the ‘reduction’ of a genetic bar on V to Vc.

DEFINITION: Let (V ,T# ) be a spraid, and c�∈V. If B is a genetic bar on
V, then B↑c=B∪{©c | ∃b∈B[c�b]} is called the reduction of B to Vc. If B
is a genetic bar on Vc then B↓={b∈V | lg(b)= lg(c)∧b 6=c}∪B is called the
expansion of B to V. (END OF DEFINITION)

PROPOSITION: Let (V ,T# ) be a spraid derived from (V, #, � ). Let c�∈V.

(i) If B is a genetic bar on V then B↑c, the reduction of B to Vc, contains a
genetic bar on Vc.

(ii) If B is a genetic bar on Vc then B↓, the expansion of B to V, is a genetic
bar on V

PROOF: Ad (i): If =c then we are done. Else, c≺. Then by genetic induc-
tion:

G© If B={©}, then B↑c={©,©c} and so contains the genetic bar ©c on
Vc.

G∝ Else B=
⋃

b∈∝()Bb where for all b∈∝(), Bb is a genetic bar on Vb such
that if c�b, then Bb

↑c contains a genetic bar on Vc. There has to be at
least one b∈∝() such that c�b, so for such b we find that Bb↑c contains
a genetic bar on Vc. And so B↑c also contains a genetic bar on Vc.

Ad (ii): By induction on n= lg(c)− lg(). If n=0 then c= and we are done.
Suppose the lemma holds for given n (and for all , c∈V) then we show it
holds for n+1 as well. So then let lg(c)= lg()+(n+1). We can locate a
b∈∝() such that c�b. Then by induction B↓b is a genetic bar on Vb. By the
above lemma, for all d∈∝(), d 6=b we know that Vdn is a genetic bar on Vd.
From this we conclude that V↓=

⋃

d∈∝(),d 6=bVd
n∪B↓b is a genetic bar on V.

(END OF PROOF)

For spreads, one can define B↑c in such a way that it is itself a genetic bar.

3.3.2 Inductive morphisms respect inductive covers (and Heine-Borel)
We need a preparatory lemma, after which we can prove the basic theorem
with respect to inductive morphisms. The lemma shows that for an inductive
morphism, we can transfer the inductive pre-image property of the whole
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space to the basic subspraids. (We could have taken that as definition too,
but we believe that in practice it leads to longer proofs.)

LEMMA: Let ƒ be an inductive morphism between the two spraids (V ,T#1 ) and
(W ,T#2 ), with corresponding pre-natural spaces (V, #1 , �1) and (W, #2 , �2).
Let ∈W, and let G be a genetic bar on W. Then for all d∈V: if ƒ (d)∈W,
then ƒ

←
(G) contains a genetic bar on Vd.

PROOF: The proof is surprisingly involved, we give it in A.3.8. The reader is
welcome to try her/himself, it should be a good exercise. (END OF PROOF)

THEOREM: Let ƒ be an inductive morphism between the spraids (V ,T#1 ) and
(W ,T#2 ), and let A,B⊆W where AÊ∝

W
B. Then ƒ

←
(A)Ê∝

V
ƒ
←
(B).

PROOF: Let ∈A, then since AÊ∝
W
B there is a genetic bar G on W such that B

descends from G. Now consider d∈ ƒ
←
()⊆V, which is equivalent to ƒ (d)∈W.

By the previous lemma ƒ
←
(G) contains a genetic bar on Vd. Since ƒ

←
(G)⊆ ƒ

←
(B)

we see that ƒ
←
(B) contains a genetic bar on Vd, so {d}Ê∝

V
ƒ
←
(B). Since , d are

arbitrary, we find that ƒ
←
(A)Ê∝

V
ƒ
←
(B). (END OF PROOF)

COROLLARY:

(i) If Z forms a subspraid (Z ,T#1 ) of (V ,T#1 ), then the restriction ƒZ of ƒ to
Z is an inductive morphism from (Z ,T#1 ) to (W ,T#2 ).

(ii) If K forms a subfann (K,T#1 ) of (V ,T#1 ), then ƒ (K) is contained in the
trea E of a subfann E of (W ,T#2 ), where ƒ (K) is dense in E (so ƒ (K)⊆E
but equality is not always the case).

PROOF: Ad (i): it suffices to show that ƒ
←

Z(A)Ê∝Z ƒ
←

Z(B) for AÊ∝
W
B. We already

know by the theorem that ƒ
←
(A)Ê∝

V
ƒ
←
(B). Therefore trivially ƒ

←

Z(A)Ê∝V ƒ
←
(B). By

corollary 3.2.1(i) we find that ƒ
←

Z(A)Ê∝Z (( ƒ
←
(B))�∩Z)= ƒ

←

Z(B), and we are done.

Ad (ii): by (i) above we can take (the restriction of) ƒ to be an inductive mor-
phism from (K,T#1 ) to (W ,T#2 ). Determine d= ƒ (©K). To see that ƒ (K) is a
contained in the trea E of a subfann E of (W ,T#2 ), consider for each n∈N the
genetic bar Gn={b∈Wd | lg(b)= lg(d)+n} on Wd (see lemma 3.3.1). For each
n∈N we have {d}Ê∝

W
Gn, so by the theorem {©K}Ê∝K ƒ

←
(Gn). Since K is a fann,

there is a finite genetic bar Dn on K such that ƒ
←
(Gn) descends from Dn. There-

fore we can finitely determine the subset En={e∈Gn | ∃∈K [ƒ ()�e]} of
Gn, since En equals {e∈Gn | ∃d∈Dn [ƒ (d)�e]}. Now we can simply take
E=
⋃

n∈NEn to fulfill the corollary. (END OF PROOF)
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To develop constructive mathematics without Brouwer’s Thesis BT (and/or
the weaker fan theorem FT), one hopes that inductive covers and inductive
morphisms enable reproducing much of classical compactness. We indicate
some problems with this approach later on, but first we turn to the question
which continuous functions between topological spaces are easily seen to be
representable by an inductive morphism.

3.3.3 Bishop-continuous R-to-R-functions are inductively representable In
formal topology (see [Pal2005]) a continuousBIS function from R to R is repre-
sentable by a formal mapping from the formal reals to the formal reals, and
vice versa each such mapping represents a continuousBIS function. We repeat
this insight in our setting, but first we give the definition of ‘continuousBIS’ for
real-valued functions on R.

DEFINITION: (in the pointwise setting of BISH) Let ƒ be a function from R to R,
then ƒ is continuousBIS iff ƒ is uniformly continuous on every BISH-compact
(meaning complete and totally bounded) subspace of R. (Equivalently, iff ƒ
is uniformly continuous on every closed interval [−n, n] for n∈N). (END OF

DEFINITION)

PROPOSITION: Let ƒ be a continuousBIS function from R to R. Then there is
an inductive morphism ƒ∗ from σR to σR such that for all ∈σR we have
ƒ ()≡ ƒ∗() (where we identify R and σR for convenience). Conversely, if g
is an inductive morphism from σR to σR, then as a function g is uniformly
continuous on each compact subspace of R.

PROOF: See appendix A.3.9. (END OF PROOF)

REMARK: If we replace the image space by R+, then the situation is quite
different. The statement that every uniformly continuous function from [0,1]
to R+ is representable by an inductive morphism from [0,1] to R+ (as a
natural space) is equivalent to the fan theorem FT. (END OF REMARK)

For the above remark to be precise, we first need to define the positive reals
R+ as a a natural space. We likewise define the apart-from-zero reals Rnt

#0 .

DEFINITION: Let RQ

+={[, b]∈RQ |> 0}∪{©R}. The space of the natural
positive real numbers Rnt

+ is the natural subspace of Rnt derived from the
pre-natural space (RQ

+, �R , #R). Put RQ

#0 =
D
{[, b]∈RQ |b< 0∨ > 0}∪{©R}.
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The space of the natural apart-from-zero real numbers Rnt
#0 is the natural

subspace of Rnt derived from the pre-natural space (RQ

#0 , �R , #R).

Next, put σ
R+
=
D
{[, b]∈σR |> 0}∪{©R} and σ

R#0
=
D
{[, b]∈σR |b< 0 ∨

> 0}∪{©R}, and we see that σ
R+

and σ
R#0

are spraids representing Rnt
+

and Rnt
#0 respectively. (END OF DEFINITION)

LEMMA: The statement that every uniformly continuous function from [0,1]
to R+ is representable by an inductive morphism from σ[0,1] to σ

R+
is equiv-

alent to the fan theorem FT.

PROOF: This follows from the well-known result in [Jul&Ric1984] that FT is
equivalent to the statement that each uniformly continuous ƒ from [0,1] to
R+ is bounded away from 0. For completeness we detail this easy conse-
quence in the appendix A.3.9. (END OF PROOF)

This lemma foreshadows paragraph 3.4.0, where we discuss pointwise prob-
lems for BISH which arise from the absence of BT.

3.3.4 Inductive Baire morphisms are constructible As another positive ex-
ample, we can construct inductive Baire morphisms in the following way.
In steps, we build an inductive morphism ƒ by determining first for all α∈N
a nontrivial first value ƒ (α)(1) of the inductive morphism ƒ . For this we need
a genetic bar B© on N , then for each  � b∈B© we put ƒ ()=©, and to each
b∈B© we assign an nb∈N and put ƒ (b)=nb. Next, for all α∈N we deter-
mine a nontrivial refinement ƒ (α)(2) of ƒ (α)(1). We do so by constructing,
for each b∈B©, a genetic bar Bb. Then we assign to each c∈Bb an nc∈N and
put ƒ (c)= ƒ (b)?nc (and for all c�d�b we put ƒ (d)= ƒ (b)). And so on...

Although laborious, the process above really is a construction. We can show
that it yields an inductive morphism and that all inductive Baire morphisms
are equivalent to a morphism which is constructed in the above way. (This is
another partial explanation of our preference for genetic bars. Genetic bars
can in our eyes be constructed in an intuitively manageable inductive way.

3.3.5 Kleene’s realizability, BT∗ and inductive morphisms The situation for
other spraids is complicated by the apartness relation. But if we are willing
to accept Brouwer’s Thesis (BT) then any morphism is inductive. The reader
can ponder on the question whether it is more elegant to inductivize all the
definitions (see also the rest of this section, because we are still not done
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yet) or to accept BT∗. With BT∗, most of the inductive machinery that we
developed here becomes superfluous.

A different indication of BT’s constructive content comes from Kleene’s re-
alizability results on intuitionistic mathematics. Kleene’s formalization of in-
tuitionistic mathematics is usually denoted FIM. After a remarkable effort,
Kleene proved in [Kle1969] that if we can prove the existence of a Baire
function ƒ in FIM 48, then this function is representable by a general recur-
sive Baire morphism ƒ̃ . This is sometimes called Church’s Rule (CR1) for FIM.
Notice that CR1 gives a true construction for the general recursive ƒ̃ which is
derived canonically from the existence proof of ƒ in the formal system FIM.

The same holds for a decidable thin bar B: if we can prove its existence
in FIM, then there is a recursive representative of B. In [Waa2005] it is
shown that BT is equivalent to the combination of two axioms BID and BDD,
where BID is Kleene’s decidable-Bar Induction (see A.4.8, and 26.3 in [Kle&-
Ves1965]), and BDD follows from AC10 (see A.4.4, A.4.12, and 27.1 in [Kle&-
Ves1965]). It is also shown that the concepts of ‘genetic bar’ and ‘decidable
thin bar’ coincide under assumption of BT.

We wish to turn this result to our advantage. Our strategy is clear: we wish to
derive from a FIM existence proof of a Baire function ƒ , a general recursive
Baire morphism ƒ̃ representing ƒ such that in addition ƒ̃ is inductive. We are
straightaway confident that Kleene’s realizability fulfills this extra aspect, by
the equivalence of BT with the combination of the FIM-valid axioms BID and
BDD. Therefore we think that it should be possible to prove that the general
recursive Kleene-realizing morphisms are also inductive.49

However, we are no experts on this subject, and we can only kindly invite
those who are to take this issue under consideration. As stated above, we
are confident that it is possible to prove this desirable extra inductive prop-
erty. So we return to our strategy. We are looking for a way to construct in-
ductive morphisms, and if our conjecture above is true, then we have found
an elegant route.

For then we can use intuitionistic theory to derive existence of a morphism
ƒ between spraids, and -if the inductivity of ƒ is not immediately appar-
ent already- use Kleene’s realizability to construct from this ‘abstract’ FIM-
existence proof a general recursive ƒ̃ representing ƒ which is also inductive.

48Equivalently we can say: ‘if we can define ƒ in FIM,...’
49Probably the proof should be on a meta-level, since we do not see how to formalize the

genetic property within FIM. Perhaps it can be done in an easy extension of FIM, ... but the
author is not knowledgeable enough in these matters.
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Notice that we are still working entirely within BISH. It might by the above
reasoning seem that we can avoid endorsing BT and the continuity principle
CP and just incorporate the relevant conditions into our definitions. But we
cannot expect this to work as easy as all that. This because in FIM, the point-
wise setting plays an integral part. Information such as ‘∀∈[0,1][ƒ ()> 0]’
has to be seen as having been acquired inductively, and in the absence of
an endorsement of BT, it is not so easy to incorporate this type of informa-
tion into the definitions. There is always a simple litmus test: whether the
definitions work in RUSS.

3.4 POINTWISE PROBLEMS IN BISH AND FINAL INDUCTIVIZA-
TION

3.4.0 Pointwise problems in the absence of Brouwer’s Thesis We return for
a moment to the discussion started in the introduction of this section. Out-
side of the restricted class of Bishop-locally-compact spaces50, the property
of being uniformly continuous on compact subspaces is a consequence of
inductivity, but it doesn’t by itself imply inductivity. In hindsight, it seems as
if Bishop underestimated the necessity of an inductive machinery in order to
build a smooth theory of compactness related to uniform continuity.

In [Schu2005], there seems to be a feeling that the inductive approach of for-
mal topology solves these issues. Notwithstanding our own inductive treat-
ment, we are not convinced that these issues are satisfactorily solved for
pointwise settings such as BISH. And, our own pointfree machinery notwith-
standing, we are not convinced that the pointwise setting should be aban-
doned in favour of the pointfree setting. Below we list some pointwise prob-
lems for BISH regarding our inductive approach, which as far as we can tell
also hold for formal topology. It therefore seems to us that the conclusions
in [Schu2005] are too optimistic.

META-THEOREM:

In RUSS (and by implication BISH) we have the following problems regarding
pointwise use of inductive definitions:

P1 Uniform continuity of a function ƒ does not imply that there is an induc-
tive morphism representing ƒ . Counterexamples can be given even for

50Metric completeness is required, R+ and (0,1) are not locally compact in BISH.
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uniformly continuous functions from [0,1] to R+. Shortly put: uniform
continuity does not imply inductive representability.

P2 Weak completeness51 of a compact space is not preserved under induc-
tivity. In RUSS, even for an inductive morphism from [0,1] to [0,1], the
image of a compact subspace may be strongly incomplete.

P3 Inductive representability is not preserved under the restriction of a
function to its pointwise image space. This follows from the counterex-
amples for P1, since every uniformly continuous function from [0,1] to
R is inductively representable by proposition 3.3.3. Therefore we can
expect problems with the reciprocal function  → 1

 , and must continu-
ally address these problems by adapting our definitions.

Therefore in BISH, the desirable properties associated with the problems
above cannot be shown to hold without further assumptions. In fact, as-
sertion of any of these properties implies the fan theorem FT.

PROOF: The proof is given in the appendix A.3.11. It is derived from the con-
struction of a compact subspace C[0,1] of [0,1] such that if we write C[0,1] for
the standard embedding of Cantor space in [0,1], we see: dR( C[0,1] ,C[0,1])=0
and yet in RUSS we also have dR(,C[0,1])> 0 for ∀∈ C[0,1] . The ‘ContraCan-
tor space’ C[0,1] is defined using the Kleene Tree. (END OF PROOF)

3.4.1 Inductivization of the basic definitions in the absence of BT∗ A final
important issue for inductivity concerns our basic definitions. We started out
by defining natural spaces and pre-natural spaces, using basic dots and a
pre-apartness on the basic dots. If we accept BT∗, then these definitions
suffice for building a classically valid theory in which compactness and in-
ductivity are naturally incorporated, and which largely resembles INT.

However, if one wishes to build an inductive theory for natural spaces with-
out accepting BT∗, then one has to ‘inductivize’ the basic definitions. (With-
out BT∗ pointwise problems persist though, by thm. 3.4.0.).

REMARK: To do this thoroughly it seems attractive to abandon pointwise no-
tions, since they generally require a pointfree translation to use inductive
information. This starts already with the definition of topology itself. The
‘arbitrary union’ requirement (Top3) is pointwise in our constructive setting,

51The property for a located subset A of a metric space (X, d) that for all ∈X: if # for
all ∈A, then d(,A)= inf({d(, ) |∈A})> 0.
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see 1.0.5(iii). It is possible to remedy this with a pointfree notion ‘toipology’,
and to thus develop a completely pointfree version of natural topology (say
‘natural toipology’). But we believe one should remember that the concept of
‘point’ is actually the same as the concept of a countable sequence and the
concept of countable infinity. These concepts are already heavily involved in
the very definition of V. Therefore the foundational gain to the author seems
smaller than one might think at first glance, and there is a price to pay in
terms of readability. For this reason, we will continue here with the basic
pointwise notions. (END OF REMARK)

For inductivization of the basic definitions, it suffices to exact that covers
which are required to exist by the basic definitions are inductive. These
covers originate from the definition of points and #-open sets.

From the definition of points, for a spraid (V ,T# ) derived from (V, #, � ) and
basic dots #b in V we know that ∀∈V ∃n∈N [n#∨n#b]. This means
that the subset C={c∈V |c#∨c#b} is a bar on (V ,T# ). For a really smooth
working of inductivity, we should know that C is an inductive bar, and adapt
our definition accordingly.

Other covers which arise directly from our basic definitions are the ones
associated with #-open subsets U ⊆V. Recall that U is #-open iff for each
∈ U and y∈V we can determine (non-exclusively) #y and/or there is an
m∈N with [ym]⊆ U . But for given ∈ U this is equivalent to saying that the
set B={b∈V |b#lg(b) ∨ [b] ⊆ U} is a bar on V. For a really smooth working
of inductivity, we should know that this bar is inductive, and we should add
this to our definition of #-open accordingly.

Our solution is to add the word ‘inductive(ly)’ to the original definitions:

DEFINITION: Let (V ,T# ) be a spraid derived from (V, #, � ). An #-open subset
U ⊆V is called inductively open in (V ,T# ) iff for any ∈ U the set BU

={b∈V |
b#lg(b)∨[b] ⊆ U} is an inductive bar on V. We then write: U is ∝ -open. The
collection of ∝ -open subsets of V is called the inductive apartness topology

on (V ,T# ), notation T#
∝ .

We call (V ,T# ) an inductive spraid (we write: ‘a ∝ -spraid’) iff:

(i) For all , b in V with #b, the set C={c∈V |c#∨c#b} is an inductive
bar on V.

(ii) The inductive apartness topology coincides with the apartness topol-
ogy, that is T# =T#

∝ .
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Finally, some abbreviating notation will be also useful. For subsets A,B of
V we write A#B iff #b for all ∈A, b∈B. We write A ≈ B iff  ≈ b for some
∈A, b∈B. We shortly write #B,  ≈ B for {}#B, {} ≈ B respectively. We
define: nV =

D
{∈V | lg()=n}, for n∈N. (END OF DEFINITION)

REMARK: It follows from BT that every spraid is inductive. We believe that
any spraid which is FIM-definable will be inductive, by our remarks in 3.3.5.
One easily sees for instance that Baire space and σR (the spraid representing
R) are inductive. We can prove that a metric spraid is inductive when its trea
is given by shrinking metric balls as basic dots, where each dot of lg(n) is a
metric ball of diameter less than 2−n and apartness of dots implies a positive
distance between the dots. This shows that complete metric spaces (by a
standard completion procedure) are homeomorphic to an inductive spread,
see paragraph 3.4.3. In the absence of BT it seems practical to demand
inductiveness by definition. (END OF REMARK)

For completeness we still need to show that T#
∝ is indeed a topology. We

add to this a simple extension of the first property of inductive spraids (we
need this extended property later on in our metrization theorem):

PROPOSITION:

(i) For a spraid (V ,T# ) with corresponding (V, #, � ), the collection T#
∝ is

a topology which is refined by T# .

(ii) Let (V ,T# ) be an inductive spraid derived from (V, #, � ). Then for finite
subsets A#B of V, the subset C={c∈V |c#A∨c#B} is an inductive bar
on (V ,T# ).

PROOF: The proof is a bit involved, we give it in the appendix see A.3.10. (END

OF PROOF)

3.4.2 Inductivization of other definitions In the absence of BT∗, for complete-
ness one should also inductivize some other definitions given in earlier sec-
tions. The most important definition in this respect is the definition of ‘fan-
like’ since in RUSS (where BT∗ fails) Baire space is fanlike under the non-
inductivized definition, by proposition 2.5.3 . The isomorphism that we con-
structed in the proof is an example of a non-inductive morphism.
To define ‘∝ -fanlike’ for spraids we could use the inductive morphisms al-
ready defined, but we wish to generalize this definition to natural spaces, and
to inductivize the definition of ‘spreadlike’ also. In general, natural spaces
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need not be given by an apartness on a trea, so we must first expand our
definition of ‘inductive morphism’ to include such natural spaces, and for
this we use the formal inductive covering relation Ê (see def. 3.0.2) in the
obvious way.

DEFINITION: Let ƒ be a morphism from a natural space (V ,T#1 ) to a natural
space (W ,T#2 ). We say that ƒ is inductive iff for all A,B⊆W where AÊWB we
have that ƒ

←
(A)ÊV ƒ

←
(B) (this agrees on spraids with the earlier definition by

theorem 3.3.2 and proposition 3.1.0). We say that (V ,T# ) is ∝ -fanlike resp.
∝ -spreadlike iff there is an inductive isomorphism from (V ,T# ) to a ∝ -fan
resp. a ∝ -spread (with an inductive inverse). (END OF DEFINITION)

We can now show: Baire space is not ∝ -fanlike. In fact any spraid which is
∝ -fanlike contains a subfann on which the identity is an isomorphism with
the whole space, see corollary 3.3.2(ii) and its proof.

REMARK: In our BISH framework therefore, Heine-Borel compactness is best
characterized as ‘∝ -fanlike’. We will use this to phrase a natural-topology
version of Tychonoff’s theorem in the next section. (END OF REMARK)

3.4.3 Complete metric spaces have an inductive representation We aim to
show the viability of the concept ‘inductive spraid’, by proving that a com-
plete metric space has a representation as a ∝ -spraid. (In fact it suffices
to look closely at the proof of theorem 1.2.3, and adapt the natural space
constructed there).

THEOREM: Every complete metric space (X, d) is homeomorphic to a ∝ -
spraid.

PROOF: We give the proof in the appendix A.3.12. The idea is not difficult:
in the proof of theorem 1.2.3 we constructed, for a complete metric space
(X, d), a natural space (V ,T# ) homeomorphic to (X, d). If we look more
carefully, we see that its trail space (V o,T#

o) contains a (homeomorphic) ∝ -
spread. (END OF PROOF)
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3.5 (IN)FINITE PRODUCTS AND TYCHONOFF’S THEOREM

3.5.0 Products, lazy convergence and isolated points For a (BISH) natural-
topological version of Tychonoff’s theorem, we must define (in)finite-product
spaces. The idea is straightforward, but there are technical issues related to
our ‘lazy convergence’ of points, and isolated points, see also A.5.3.

Isolated points are points which as a set are open in the topology, for in-
stance in a one-point natural space. Generally, consider a natural space
(V ,T# ) derived from (V, #, � ), where ∈V is ’isolated’: for all b#c∈V one
has #b ∨ #c. Then both  and the infinite sequence =, , , . . . have
the #-characteristics of a point, except (and this is crucial) that their image
under a morphism generally does not share those point-characteristics.

DEFINITION: Let (V ,T# ) be a natural space derived from (V, #, � ). Put V
◦
=
D

{∈V | ∀b, c∈V[b#c → (#b ∨ #c)]}, then elements of V
◦

are isolated

basic dots. We call (V ,T# ) a decidable-isolation space iff V
◦

is a decidable
subset of V, and a perfect space iff V

◦
=∅. (END OF DEFINITION)

An obvious try for a definition of the product of two natural spaces (V ,T#1 )
and (W ,T#2 ) (derived from (V, #1 , �1), (W, #2 , �2)) is to take V×W as the set
of basic dots, and to define (c, d)� (, b) iff c�1∧d�2b and (c, d)#(, b) iff
c#1 ∨ d#2b. This works fine for perfect spaces (V ,T#1 ) and (W ,T#2 ). But
for isolated ∈V and q∈W the sequence (, q0), (, q1), (, q2), . . . =(, q)
becomes a point in V×W. This is unwanted, since we need the coordinate
projections π0 : (, y)→  and π1 : (, y)→ y to be morphisms.

3.5.1 Definition of (in)finite-product spaces We look to retain the elegance
of the simple approach when possible, and yet ensure at all times that the
coordinate projections are morphisms. For this we concentrate first on the
most important class of spreads/spraids, since we wish the product to be a
spread/spraid as well.

We could restrict ourselves to spraids w.l.o.g., but other representations in-
terest us also. The simple approach works for perfect spaces. They form a
subclass of the decidable-isolation spaces where a slightly adjusted approach
works in all but trivial cases. Finally we give a general definition which works
for all spaces, but is somewhat less elegant.
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DEFINITION: Let ((Vn,T#n ))n∈N be natural spaces derived from the correspond-
ing pre-natural ((Vn, #n , �n ))n∈N with maximal dots (©n)n∈N. We form V

(n) =
≤nV = {(0, . . . , n) | ∀ ≤ n[∈V]} for n∈N , and also V=

⋃

n∈NV
(n).

For n≤m∈N, ∈V(n), b∈V(m) put #b iff there is ≤ n with # b. Also:

b� iff ∀ ≤ n[b� ]
b≺

◦ iff b≺∧ ∀ ≤ n[∈V
◦
 → b≺ ] ; b≺

◦◦ iff b≺
◦∧m> n

b≺
• iff ∀ ≤ n[b≺ ] ; b≺

•• iff b≺
•∧m> n

Then �
◦ is decidable when ((Vn,T#n ))n∈N are all decidable-isolation spaces.

If ((Vn,T#n ))n∈N are perfect spaces then �
◦ equals � .

For ((Vn,T#n ))n∈N as above the simple finite product ≤n(V ,T# ) is the nat-
ural space derived from (V(n), # , �) with maximal dot ©

(n) = ©0, . . . ,©n.
We also write V0×V1 . . . ×Vn for ≤n(V ,T# ).
The simple infinite product n∈N(Vn,T#n ) is the natural space derived from
(V , # , �) with maximal dot © =D

©0. We often omit the word ‘simple’. For
perfect spaces, the simple (in)finite products suffice.

When ((Vn,T#n ))n∈N are spraids, then (V(n), �) and (V , �) are treas. Yet
≤n(V ,T# ) and n∈N(Vn,T#n ) usually fail to be a spraid (also see A.5.5)
since for a spraid, infinite ≺ -trails have to define a point. So we put V,σ

(n)=
D

{∈V(n) | ∀ , j≤ n[lg()= lg(j)]}, V,σ =D
⋃

n∈N{∈V,σ(n) | ∀ ≤ n[lg()=n]}.

The finite-product spraid ι·≤nσ (V ,T# ) is the spraid (or spread) derived from
(V,σ(n), # , �) with maximal dot ©

(n). We frequently write V0×
σ V1 . . . ×

σ Vn for
ι·≤nσ (V ,T# ), and for V,σ

(n) we also write V0×
σ
V1 . . . ×

σ
Vn.

The infinite-product spraid n∈Nσ (Vn,T#n ) is the spraid (or spread) derived
from (V,σ , # , �) with maximal dot ©=©0.

When ((Vn,T#n ))n∈N are decidable-isolation spaces, then the finite ◦-product


◦
≤n(V ,T# ) is the natural space derived from (V(n), # , �

◦ ) with maximal
dot ©

(n). We also write V0×
◦ V1 . . . ×

◦ Vn for ≤n(V ,T# ).
The infinite ◦-product 

◦
n∈N(Vn,T#n ) is derived from (V , # , �

◦◦ ) with maxi-
mal dot © . We can replace �

◦◦ with �
◦ when ∀n∈N∃m>n[©m 6∈V

◦
m].

For ((Vn,T#n ))n∈N as above the strict finite product 
•
≤n(V ,T# ) is the natural

space derived from (V(n), # , �
• ) with maximal dot ©

(n). We also frequently
write V0×

• V1 . . . ×
• Vn for ≤n(V ,T# ).

The strict infinite product 
•
n∈N(Vn,T#n ) is derived from (V , # , �

•• ) with
maximal dot © . We can replace �

•• with �
• when ∀n∈N∃m>n[©m 6∈V

◦
m].

We often omit the word ‘strict’. (END OF DEFINITION)
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The reader may verify that these definitions are valid. Some key properties
are stated in the next paragraphs, one of which contains a constructive form
of Tychonoff’s theorem.

3.5.2 Projections and the Tychonoff topology (Spaces and notation contin-
ued from the previous paragraph:) we wish to throw some light on the re-
lation between the product-apartness topology and the Tychonoff (product)
topology. Classically, the Tychonoff topology is the ’natural’ product topol-
ogy, it being the coarsest topology rendering the coordinate projections con-
tinuous. For natural spaces however, these projections moreover need to be
morphisms. For (in)finite products of (weak) basic neighborhood spaces (by
far the most important class) the two topologies coincide, which is not sur-
prising by theorem 1.2.2. In BISH, for other spaces this remains elusive to us,
although the product-apartness topology refines the Tychonoff topology. In
CLASS and INT we can show that also for the (in)finite product of star-finitary
spaces (see def. 4.0.10) the two topologies coincide.

Therefore, calling an (in)finite product ‘faithful’ if the apartness topology and
the Tychonoff topology coincide, there will certainly be no easy examples of
unfaithful products. Faithfulness is an important property for products, which
we now define along with ‘weak basic neighborhood space’ and the relevant
coordinate projections π, using the spaces and (in)finite products from the
previous paragraph.

DEFINITION: (notation from 3.5.1) Let =0, . . . , s∈V , for ≤ s put π() =
D


and for  > s put π() =
D
©. For ≤m and points ∈j≤mV j and y∈n∈NVn,

put [] =
D
π() = π(0), π(1), . . . and y[] =

D
π(y)=π(y0), π(y1), . . ..

Let (W ,T# ) be any of the products defined in 3.5.1, then (W ,T# ) is faithful

iff the product-apartness topology T# and the Tychonoff topology coincide.

A natural space (V ,T# ) is a weak basic neighborhood space iff for every ∈V
there is an ′≡ such that ′n is a basic neighborhood of  for every n∈N
(so every basic neighborhood space is a weak basic neighborhood space by
prp. 1.2.2). (END OF DEFINITION)

PROPOSITION: (about def. 3.5.1)

(i) For ((Vn,T#n ))n∈N and the defined simple (in)finite products, the appro-
priate projections π are morphisms iff all the V j’s involved in the prod-
uct are perfect spaces.
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(ii) For the other defined (in)finite-product spaces, the appropriate projec-
tions π are always morphisms.

(iii) For (weak) basic-neighborhood spaces ((Vn,T#n ))n∈N, the (in)finite prod-
ucts are faithful (weak) basic neighborhood spaces.

(iv) In CLASS and INT, also the (in)finite products of star-finitary spaces are
faithful.

(v) For other spaces, the natural topology of the (in)finite products refines
the Tychonoff topology.52

PROOF: We leave (i) and (ii) as exercise for the reader, and prove (iv) in
A.3.13. For (iii) first let ((Vn,T#n ))n∈N be basic-open spaces. Let n∈N , and
consider =0, . . . , n∈V(n). We hold that [] is open in the relevant defined
products (see def. 3.5.1), since the set [] equals

⋂

≤nπ−1([]) where the
π’s are morphisms by (ii) (and so continuous), and the []’s are open. This
also shows that the basic open set [] is open in the Tychonoff topology,
therefore the natural topology and the Tychonoff topology coincide.

So for basic-open ((Vn,T#n ))n∈N the relevant (in)finite products are again
basic-open. For basic neighborhood spaces ((Vn,T#n ))n∈N we can now use
the coordinate-wise isomorphisms with a basic-open space to see that the
relevant (in)finite products are again basic neighborhood spaces.

For weak basic neighborhood spaces ((Vn,T#n ))n∈N, a very similar argument
using AC01 can be given. Let  be in an (in)finite product, then for each
relevant  there is y()≡ [] with (y())n a basic neighborhood of [] for all
n∈N . Using AC01 we can determine a y≡ in the same product such that
(y[])n is a basic neighborhood of [] for all n∈N . This implies that yn is a
basic neighborhood of  for all n∈N .
If our  is in some open U , then we find [yn]⊆ U for some n∈N . However,
[[yn]] equals
⋂

≤Mπ−1([[π(yn)]]) for some M∈N, and so is a neighborhood of
 in the Tychonoff topology. This shows that the product is faithful.

Finally (v): for other spaces, the natural topology of the relevant (in)finite
products renders the projections as morphisms and therefore continuous, so
it trivially refines the Tychonoff topology. (END OF PROOF)

3.5.3 Spraid products and Tychonoff’s theorem Our prime purpose with this
section was to define (in)finite products for spraids. Having done so, we

52It remains elusive to us whether unfaithful products exist in CLASS, RUSS, or INT.
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phrase some (expected) nice properties of these products as a theorem.
There is one important property which we can so far only prove in BISH if
the product is faithful, namely that if ((Vn,T#n ))n∈N are ∝ -spraids, then a
faithful (in)finite product is also a ∝ -spraid.

Specified to ∝ -fanns, this yields a natural-topology version of Tychonoff’s
theorem (since we characterized Heine-Borel compactness as ‘∝ -fanlike’ in
3.4.2). In keeping with the rest of the chapter, to show in BISH that the
faithful product of inductive spraids is again inductive requires quite some
work. We start with the following definition and lemma:

DEFINITION: Let ((Vn,T#n ))n∈N be spraids derived from the corresponding pre-
natural ((Vn, #n , �n ))n∈N. Given subsets A⊆V for ≤ n∈N, we put

ι·≤nσ A=A0×
σ
. . . ×σ An =

D
{∈V,σ(n) |∀ ≤ n [π()∈ (A)� ]∧ ∃ j≤ n [πj(j)∈Aj]}

ι·≤nσ A =
D
{∈V,σ |∀ ∈N [π()∈ (A)� ]}

(this aligns with the definition of V×σ W in def. 3.5.1). (END OF DEFINITION)

LEMMA: (Notations as above) Let ∈V0, b∈V1 and let G,H be genetic bars on
(V0), (V1)b respectively. Then G×σ H is an inductive bar on (V0)×

σ
(V1)b.

PROOF: By double genetic induction, see A.3.14. (END OF PROOF)

COROLLARY: For ≤ n let B be an inductive bar on V. Then ι·≤nσ B is an
inductive bar on V,σ

(n) and ι·≤nσ B is an inductive bar on V,σ .

THEOREM: For (star-finite) spreads (spraids, fanns) ((Vn,T#n ))n∈N the prod-
ucts ι·≤nσ (V ,T# ) and n∈Nσ (Vn,T#n ) are in turn (star-finite) spreads (spraids,
fanns). For ∝ -spraids the products ι·≤nσ (V ,T# ) and n∈Nσ (Vn,T#n ), if faithful,
are in turn inductive.

PROOF: We prove that for ∝ -spraids ((Vn,T#n ))n∈N the products ι·≤mσ (V ,T# )
and n∈Nσ (Vn,T#n ), if faithful, are in turn ∝ -spraids. The other (combinations
of) properties are left as an exercise for the reader.
So let ι·≤mσ (V ,T# ) be a faithful finite product of the ∝ -spraids ((Vn,T#n ))n∈N.
To show that ι·≤mσ (V ,T# ) is inductive, first let #b in V,σ

(m) . We must show
that the bar B={c∈V,σ(m) |c# ∨ c#b} is inductive. There is ≤m with
# b, so C={c∈V |c#  ∨ c# b} is an inductive bar on V. For j 6=  let
Cj={©j}, then by the above lemma and corollary C=C0×

σ
. . . ×σ Cn is an in-

ductive bar on V,σ
(m) . It is easy to see that C⊆B so B is inductive as well.
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Second, let U be open in ι·≤mσ (V ,T# ). We must show that U is ∝ -open.
For this let ∈ U . To see that the bar BU

={b∈V,σ(m) | b#lg(b) ∨ [b] ⊆ U} is
an inductive bar on V,σ

(m) , determine ∝ -open U 3[] in each V  such that
⋂

π−1(U ) ⊆ U (remember ι·≤mσ (V ,T# ) is faithful). Then for ≤m the bars
BU
={b∈V | b# ([])lg(b) ∨ [b] ⊆ U } are inductive and monotone.

For  6= j≤m let D,j={©j} and D,=BU
 , then by the above lemma and corol-

lary D=D,0×
σ
. . . ×σ D,m is a monotone inductive bar on V,σ

(m) . By lemma
A.3.10, the bar D=

⋂

D is a monotone inductive bar on V,σ
(m) . Clearly D⊆BU

,
so BU

 is inductive as well and we are done for ι·≤mσ (V ,T# ).

Finally, let n∈Nσ (Vn,T#n ) be faithful. We can copy the arguments above for
ι·≤mσ (V ,T# ), replacing C,D with C,D, to see that n∈Nσ (Vn,T#n ) is inductive.
(END OF PROOF)

REMARK: Our BISH countable version of Tychonoff’s theorem is that for ∝ -
fanns ((Vn,T#n ))n∈N the products ι·≤nσ (V ,T# ) and n∈Nσ (Vn,T#n ), if faithful,
are in turn ∝ -fanns. In CLASS and INT the inductive properties follow from
BT, and the countable Tychonoff’s theorem is easy. (END OF REMARK)



CHAPTER FOUR

Metrizability, and natural
topology in physics

Metric spaces are perhaps the most important topological spaces,
and the question of metrizability has been fundamental for the de-
velopment of classical topology. In constructive topology, the con-
cept of ‘located in’ is usually tied to a metric. We discuss the alter-
native ‘(topologically) strongly halflocated in’, which is transitive.
We give the basic definitions, and show first that there are interest-
ing non-metrizable natural spaces. We can define Silva spaces also
in the context of natural topology, and infinite-dimensional Silva
spaces are non-metrizable.

We translate the intuitionistic metrizability of star-finitary apart-
ness spreads to BISH, using the inductive definitions of the previous
chapter. The resulting metrization theorem for star-finitary natural
spaces closely resembles classical metrization results for strongly
paracompact spaces. Star-finite metric developments are also of
interest for efficient computing with complete metric spaces.

In the last section, we again discuss which mathematics are suited
for physics. We also present an informal two-player model of INT in
RUSS, called ‘Limited Information for Earthlings’ (LIfE).
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4.0 METRIC SPACES AND (NON-)METRIZABILITY

4.0.0 Metric spaces and (non-)topological notions The best-studied topolog-
ical spaces in constructive mathematics are metric spaces, since a metric
gives a lot of constructive traction in defining compactness, continuity and
open covers. Still, different metrics can give rise to the same topology.53

Conversely many notions defined for a metric space are not ‘topological’ –
that is they are not necessarily preserved under homeomorphisms. Metri-
cal completeness is the standard example of a non-topological notion, which
leads us to the definition of ‘topologically complete’ (namely ‘homeomorphic
to a complete metric space’).54

A more important example of a non-topological constructive notion is that
of a subset A being ‘located’ in a metric space (X, d), meaning that the dis-
tance to A can be calculated for any ∈X. Although the notion ‘located in’
is extensively used, it has substantial drawbacks especially in the context of
topology. We discuss some alternatives given in [Waa1996] which resolve
these drawbacks. A form of locatedness is important also for natural topol-
ogy. We briefly discuss this here, to expand on in the appendix.

4.0.1 Various concepts of locatedness What are these drawbacks of the con-
cept ‘located in’? First of all, the notion is not transitive, which is unpractical
when working with extensions and subspaces of (X, d). Second, even for
a closed located A⊂X, the notion gives little handhold for ∈X to find ∈A
such that # implies #A, which is an important prerequisite for many con-
structions involving A. Thirdly, as mentioned, the notion is non-topological
and this means we cannot use it easily in the context of topology.

In [Waa1996] several alternative notions are given in BISH, of which ‘strongly
halflocated in’ seems more fruitful than ‘located in’. The notion is transitive,
unlike ‘located in’. To see that it gives results, note its use in the BISH-proof of
the Dugundji extension theorem in [Waa1996]. Another result is that every
complete metric space can be isometrically embedded in a normed linear
extension such that it becomes strongly halflocated in this extension – and
where we know of no general proof that it is located.

53In [Waa1996] these metrics are then called ‘equivalent’ and ‘strongly equivalent’ if they
give rise to the same Cauchy-sequences.

54E.g. ‘locally compact’ in BISH is a non-topological notion relying on metrical complete-
ness. We believe this to be unwieldy for topology.
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‘Topologically strongly halflocated’ is seen in INT to be equivalent on com-
plete metric spaces to a topological locatedness property called ‘strongly
sublocated in’. This notion can also be defined for the apartness topology
of natural spaces, and seems relevant. We repeat the definitions for these
properties in the appendix A.3.15, in order not to lose reading pace.

4.0.2 Natural metric spaces Let us start by defining natural metric spaces, as
natural spaces with a metric (respecting the apartness). The induced metric
topology need not coincide with the apartness topology however. For (a
suitable natural representation of) a complete metric space we can show that
the apartness topology coincides with the metric topology (see thm. 1.2.3,
which is analogous to (Rnt,T#R ) being homeomorphic to (R, dR)).
Weakly metrizable natural spaces are those spaces on which we can con-
struct a metric respecting the apartness, and they are metrizable if the met-
ric topology coincides with the apartness topology. Complete metric spaces
are thus metrizable. We will see that there are weakly metrizable spaces
which are non-metrizable.

DEFINITION: For a natural space (W ,T# ) a morphism d from W×W to Rnt is
called a metric on (W ,T# ) iff for each α, β, γ∈W we have

(i) d(α, β)≡d(β,α)≥ 0

(ii) d(α, β)> 0 iff α#β

(iii) d(α,γ)≤ d(α, β)+d(β, γ)

If T is a topology on W, then we say that d metrizes T iff the metric topology
determined by d is the same as T . (W ,T# ) is called weakly metrizable if
there is a metric d on (W ,T# ), and metrizable if this metric metrizes T# .
(END OF DEFINITION)

In this section we show that a vast class of natural spaces is metrizable. This
class is not limited to (natural representations of) locally compact spaces,
in fact the ‘star-finitary’ property that we use resembles (strong) paracom-
pactness very closely. Star-finite open covers are a useful tool in general
topology, and accessible to constructive topology in the context of metric
spaces (see [Waa1996]).

Before turning to metrizable spaces, let us consider the question whether we
can find interesting and important non-metrizable natural spaces.
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4.0.3 Are there interesting non-metrizable spaces? Apartness topology (and
possible metrizability) is extensively studied in [Waa1996], in the context of
INT. Still, only simple examples of non-metrizable natural spaces are given.
They seem to us of little value other than for demonstration purposes.

In this monograph we do not delve into non-metrizability either, but we show
that in infinite-dimensional topology the construction of direct limits leads
us to interesting non-metrizable natural spaces. These spaces have already
been studied in a TTE setting by others, see e.g. [Kun&Sch2005] for a nice ar-
ticle discussing also practical computational aspects.55 The examples given
in [Kun&Sch2005] are: the space of polynomials with real coefficients, the
space of real analytic functions on [0,1], and the space of distributions with
compact support. It should be possible to translate these spaces to the set-
ting of natural spaces, since the TTE treatment resembles our development,
but there might be some work involved in constructivizing the classical re-
sults which are used.

Our simple example will consist of taking the direct limit of all the Euclidean
spaces (Rn)n∈N, which is equivalent to the space of ‘eventually vanishing real
sequences’, for which limit we show that the resulting classical limit-topology
is in fact the apartness topology, and that this topology is non-metrizable.
The non-metrizability is well-known, but the equivalence to the apartness
topology is a nice illustration, we hope, that the concepts in this paper are
also of interest for classical mathematicians.

The space of eventually vanishing real sequences is one way of representing
the space of polynomials with real coefficients. Therefore our example also
illustrates how to translate the spaces in [Kun&Sch2005] to our setting.

4.0.4 Direct limits of natural spaces and Silva spaces We define the direct
limit of an increasing sequence of natural spaces along classical lines, where
the apartness topology provides a very easy way to do so.

DEFINITION: Let (V ,T# ) be an natural space derived from (V, #, � ). Suppose
there is a sequence of subsets (Vn)n∈N of V=

⋃

n∈NVn, where for each n∈N
the pre-natural space (Vn, #, � ) gives rise to a natural subspace (Vn,T# ) of
(V ,T# ), and where in addition Vn⊆Vn+1.
Then (V ,T# ) is called the direct limit of ((Vn,T# ))n∈N. (END OF DEFINITION)

55As stated earlier TTE is not an area in which the author is knowledgeable, it would seem
that results from CLASS are taken for granted, and then translated to a computability setting.
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This very simple definition suffices for our purposes here, but it also is, we
believe, a faithful mirror of the traditional definition for e.g. Silva spaces
arising as direct limits of Banach spaces, since on a separable complete
metric space the metric topology coincides with the apartness topology (see
theorem 1.2.3).

4.0.5 The direct limit of the Euclidean spaces is non-metrizable Firstly, let
−→
R

ω
= {∈RN | ∃n∈N∀m∈N,m≥ n[[m]≡0]} be the subset of RN of even-

tually vanishing real sequences.56 As a subset of RN, it is at least weakly
metrizable, but a different topology arises when we consider

−→
R

ω
as the di-

rect limit of the Euclidean spaces (Rn)n∈N. This direct limit is a very simple
example of an infinite-dimensional Silva space (meaning the direct limit of
an increasing sequence of Banach spaces, with an extra compactness condi-
tion on the closed inclusion images of the respective unit spheres). We show
that this direct limit arises naturally in our context, when building

−→
R

ω
as the

point set of a natural space. Notice that
−→
R

ω
is not a subspace of RN under

our definition of ‘natural subspace’.

So to build
−→
R

ω
as a natural space, we cannot simply use the infinite-product

definitions used in defining RN (see definition 3.5.1), although we can use
the same collection of basic dots. We should distinguish between

−→
R

ω
as a

point-subset of RN, and
−→
R

ω
as the point set of the natural space (

−→
R

ω
,
−→
T

ω

# ), but
to avoid tedious notation we will not do so.

DEFINITION: Let RQ
∗=(RQ)=
⋃

n∈NRQ
n be the set of finite sequences of closed

rational intervals. Denote the empty sequence as ©
RN

. We define RNnt as
the infinite product n∈NRnt, see definition 3.5.1, but we write #

RN
for the

product apartness and �
RN

for the product refinement (and often RN for RNnt)

To define
−→
R

ω
as the point set of a natural space, we need to sharpen the

product apartness #
RN

and the refinement �
RN

. To understand this, note
that for n∈N we now consider the basic dots in RQ

n+1 as belonging to points
∈RN with [m]≡0 for all m>n+1.
So let =0, . . . , n∈RQ

n+1 and b=b0, . . . bm∈RQ
m+1 with m≥ n, then we put

#−→
R
b iff: there is ≤ n with #Rb and/or there is n< ≤m with 0 6∈b (which

is decidable since b is a rational interval for all ≤m). Similarly we put b�−→
R


iff: b �R  for all ≤ n and 0∈b for all n< ≤m.

56Remember that we write [m] for the real number which is the m-th coordinate of  as
an infinite sequence of real numbers, and m for the m-th basic dot of  as a sequence of
basic dots. Also, we drop the subscript ‘nat’ in Rnt for notational simplicity.
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The natural space of eventually vanishing real sequences is (
−→
R

ω
,
−→
T

ω

# ), de-
rived from the pre-natural space (RQ

∗, #−→
R
, �−→

R
). We also for each n∈N+ de-

fine: Rn∗ = {∈
−→
R

ω
| ∀m∈N [m∈

⋃

1≤≤nRQ
 ]}. We see: if ∈Rn∗, then [m]≡0

for all m>n. Notice that there is only a trivial difference between Rn∗ and Rn

defined as finite product space in 3.5.1. (END OF DEFINITION)

PROPOSITION: (
−→
R

ω
,
−→
T

ω

# ) is the non-metrizable direct limit of (Rn∗,
−→
T

ω

# )n∈N, where
(Rn∗,

−→
T

ω

# ) is � -isomorphic to the Euclidean space (Rn,T#R ) for n∈N . There is
a continuous injective surjection (which does not have a continuous inverse)
from (

−→
R

ω
,
−→
T

ω

# ) to (
−→
R

ω
,T#RN ) as subspace of (RN,T#RN ).

PROOF: We prove this in the appendix A.3.16, but the reader should have no
problem with it as an exercise. (END OF PROOF)

REMARK:

(i) More generally one can prove in this fashion that infinite-dimensional
Silva spaces are non-metrizable natural spaces. We do not go into this,
but it is an easy generalization of the above constructions for (Rn)n∈N
and RN.

(ii) Perhaps interesting: Rnt ‘equals’ the direct limit of ([−n, n]∗
rt
,T#R )n∈N+ ,

where [−n, n]∗
rt
= {[, b]∈Q×Q | − n≤ < b≤ n}∪{©R}.

(END OF REMARK)

For non-metrizable natural spaces resembling examples in [Ury1925a] we re-
fer the reader to [Waa1996]. It should be possible to transfer the separation
properties T1 through T4 given there to our setting of natural spaces.

4.0.6 Metrizability results for paracompact-like spaces Metrizability of topo-
logical spaces has played a very important part in the development of clas-
sical general topology. In constructive mathematics, the focus until recent
years has been primarily on metric spaces. In [Fre1937], an intuitionistic
metrization result for compact spaces was obtained. This result was ex-
tended in [Tro1966] to locally compact spaces. In [Waa1996], using a dif-
ferent technique, these results were reobtained for apartness spreads, and
metrizability was extended to ‘star-finitary’ spaces. The latter resembles
classical metrization results for strongly paracompact spaces.

For now, we turn to the metrizability results in [Waa1996]. For completeness,
let us repeat the classical definitions of ‘paracompact’ and ‘star-finite cover’.
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In CLASS, a topological space (X,T ) is called paracompact iff every open
cover U of the space has a locally finite refinement, meaning a refining open
cover W such that each ∈X is contained in only finitely many open sets
in W. An open cover U of (X,T ) is called star-finite iff for each U∈ U there
are only finitely many elements W∈ U such that U∩W 6=∅. So we see that
a star-finite open cover is always locally finite, but the converse is not true.
Therefore a space is called ‘strongly paracompact’ iff every open cover of
the space has a star-finite refinement.

There are many classical results on metrizability in regard to paracompact-
ness and strong paracompactness, also specifically for separable Lindelöf
spaces (which resembles our setting). We profess not to have a clear as-
sessment of the relation between our result and these classical results, al-
though we expect the below constructive metrization theorem to follow in
CLASS from an existing classical metrization theorem. The classical theorem
most resembling our constructive treatment seems the one stating that a
T0 space is metrizable iff it has a development (Wn)n∈N where Wn+1 is a
star-finite refinement of Wn for each n∈N .

4.0.7 Star-finitary spaces From the definition of spraids, it might seem at first
glance that for a given spraid (V ,T# ) derived from the pre-natural space
(V, #, � ) and ∈V, there are only finitely many b∈V with lg(b)= lg() and
Vb ∩V 6=∅ (one could call this a lg() star-finite basic intersection property,
but we will not use this). However, this does not follow from the definition if
one looks carefully, and counterexamples are easy to construct.

Even if a lg(n) star-finite basic intersection property holds for each n∈N ,
then because of the complicating apartness relation, it tells us little about
the natural topology of the space (V ,T# ). Therefore we will define our star-
finite property in terms of the apartness relation # (or rather its comple-
menting touch-relation ≈ ) on basic dots. For metrizability results we then
look at ‘star-finitary’ natural spaces, which are ∝ -isomorphic to a star-finite
∝ -spraid (V ,T# ) (where the inductivity of (V ,T# ) ensures nice behaviour of
the apartness relation).

DEFINITION: Let (V ,T# ) be a spraid derived from (V, #, � ), where ≈ ⊂V×V
is the complement of #. We say that ≈ as well as (V ,T# ) and (V, #, � ) are
star-finite iff for each ∈V the subset {b∈V | lg(b)= lg()∧b ≈ } is finite. A
natural space (W ,T# ) is called star-finitary iff (W ,T# ) is ∝ -isomorphic to a
star-finite ∝ -spraid. (END OF DEFINITION)
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The class of star-finitary spaces is large since countable products of star-
finitary spaces are again star-finitary. Baire space is a star-finite ∝ -spraid,
and RN is star-finitary (a star-finite ∝ -spraid representing RN can be obtained
by forming the countable product of copies of the star-finite ∝ -spraid σR).

4.0.8 Star-finitary spaces are metrizable In this paragraph we translate an
intuitionistic result regarding metrizability of apartness spreads. This trans-
lation (especially its proof) takes some time, since the original result makes
multiple use of the intuitionistic axioms AC10 and FT. Our translation below
(and especially its proof) is therefore also a good example how to circumvent
the use of these axioms if one is so inclined, and simultaneously shows that
-as should be expected- intuitionistic theorems carry ‘effective’ content. 57

THEOREM: Every star-finitary natural space is metrizable.

PROOF: It suffices to prove the theorem for a star-finite ∝ -spraid (remember
that ‘∝ -spraid’ is shorthand for ‘inductive spraid’). For this we translate the
proof of the corresponding intuitionistic theorem in [Waa1996] for star-finite
apartness spreads. This translation is in principle unproblematic, since the
use of FT in that proof can now be replaced by the use of the inductive Heine-
Borel property for subfanns (HB∝ ), and the use of AC10 becomes superfluous
by our definition of inductive spraid.
Still, since the original result is not trivial, our translation also involves quite
some work. We give this translation in the appendix, see A.3.18. We also
sketch the main idea of the proof below, when discussing the corollary. (END

OF PROOF)

COROLLARY: Every ∝ -fann is metrizable (‘every compact space is metriz-
able’), and every space with a one-point ∝ -fanlike extension is metrizable
(‘every locally compact space is metrizable’).

PROOF: For didactical reasons we will first prove the corollary directly in
A.3.17, before proving all of the theorem above. Let us sketch the strat-
egy for a ∝ -fan (W ,T# ) derived from (W, #, � ) already here. To each
#b∈nW (for certain n∈N) we can construct a canonical morphism ƒ,b from
(W ,T# ) to [0,1]ter such that ƒ,b≡R0 on W and ƒ,b≡R1 on Wb. Then let

57In [Pal2009] the usage of intuitionistic axioms is called non-effective, which indicates
that their constructive content might not be immediately apparent, a reason to elucidate this
constructive content here.
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h : N → W×W be an enumeration of all apart pairs #b∈nW (for all n∈N),
and put d(, y) =

D

∑

n∈N 2
−n · | ƒh(n)()− ƒh(n)(y) | to obtain the desired metric d.

For #b∈nW (for certain n∈N), in order to construct a canonical morphism
ƒ,b from (W ,T# ) to [0,1]ter such that ƒ,b≡R0 on W and ƒ,b≡R1 on Wb,
we split W first in W0, W1 and W2 where  ≈W0, #W1#b and W2 ≈ b and
moreover W0#W2.

For this we use the splitting lemma A.3.17 (B), which tells us that finite apart
A#B⊂W always lead (for big enough N∈N) to a partition of NW in three sets
C,D, E where A ≈ C, A#D#B, E ≈ B and moreover C#E.

Then we iterate this procedure for each W (where ∈{0,1,2}), splitting e.g.
W0 in W00,W01,W02 where  ≈W00, #W01#W1 and W02 ≈W1 and more-
over W00#W02.
In this way, we actually construct a function from W to {0,1,2}∗, such that
this function represents a morphism from (W ,T# ) to σ3,ter (see example
1.3.2), where the latter is isomorphic to [0,1]ter.

To generalize this strategy for ∝ -fans to a star-finite ∝ -spread involves a lot
of extra work, but the basic idea remains the same. For the complete proofs,
we refer the reader to A.3.17 and A.3.18. (END OF PROOF)

REMARK:

(i) The theorem seems to cover much of what is possible, metrization-
wise. One can prove in INT (and likely CLASS, RUSS) that complete metric
spaces are weakly star-finitary (which in CLASS is equivalent to being
star-finitary). We discuss this in the next paragraph.

(ii) The example in A.2.1 of a possible spherical completion of Cp might
pose an interesting application for the metrization theorem above, but
we confess to not having studied this issue in any detail.

(END OF REMARK)

4.0.9 Complete metric spaces are weakly star-finitary in INT It is shown in
[Waa1996] for INT that every (separable) complete metric space is weakly
star-finitary. If we look at the proof, we see that it essentially uses only
countable choice and the axiom BDD (see the appendix A.4.12), which is
true in CLASS, INT and RUSS. This means that the theorem likely holds also in
CLASS and RUSS. In CLASS ‘weakly star-finitary’ is equivalent to ‘star-finitary’.



Metric spaces and (non-)metrizability 92

DEFINITION: Let (V ,T# ) be a spraid derived from (V, #, � ), where ≈ ⊂V×V
is the complement of #. We call ≈ and (V ,T# ) and (V, #, � ) weakly star-

finite iff for each ∈V the subset {b∈V | lg(b)= lg()∧b ≈ } is subfinite,
meaning there is N∈N such that {b∈V | lg(b)= lg()∧b ≈ } contains at most
N elements. A natural space (W ,T# ) is called weakly star-finitary iff (W ,T# )
is ∝ -isomorphic to a weakly star-finite ∝ -spraid. (END OF DEFINITION)

THEOREM: (in INT and likely CLASS and RUSS) Every complete metric space
is homeomorphic to a weakly star-finite ∝ -spread.

PROOF: (detailed sketch) The proof for INT is given in [Waa1996] (thm. 3.1.8)
using AC10 in several lemmas. However, upon reflection one sees that each
use of AC10 can be substituted by a use of BDD (see the appendix A.4.12),
which is true in CLASS, INT and RUSS.

We sketch the translation to our setting in some detail. Let (X, d) be a com-
plete metric space. We saw in (the proof of) theorem 3.4.3 that there is
a ∝ -spread V ogd which is homeomorphic to (X, d). This spread V ogd is de-
rived from the neighborhood development of (X, d) formed by the collection
{B(n,2−s) |n, s∈N} where (n)n∈N is a dense sequence in (X, d). The strat-
egy of the proof is to sharpen this neighborhood development into a strongly
star-finite neighborhood development as follows.

By [Waa1996], thm. 3.1.1 (valid in BISH) a per-enumerable open cover of
(X, d) has a strongly star-finite refinement.
We construct a strongly star-finite refinement U0 of {B(n,2−0) |n∈N}. Then
we construct a strongly star-finite refinement U1 of {B(n,2−1) |n∈N} , and
then of {B(n,2−2) |n∈N} , etc. We obtain a sequence (Un)n∈N of strongly
star-finite covers such that for each U in Un: dm(U)< 2−n . Now we use
the elements of Un as the lg(n) basic dots of our weakly star-finite spread
(W ,T# ), where we need to be precise in defining � , since these lg(n) dots
belong to particular lg(n−1) dots. Here some real work needs to be done,
also to define a weakly star-finite touch-relation ≈ on W such that for the
corresponding apartness # we have: (W ,T# ) coincides with (X, d).

The entire proof, in order to be precise and correct, already for INT involves
some more work than one might expect. We refer the reader to [Waa1996],
and leave this proof-sketch for what it is: a sketch. (END OF PROOF)

4.0.10 Star-finite developments and ‘efficient’ metric spraids We turn once
more to the APPLIED perspective. In paragraph 2.3.2 we showed that our
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representation of the real numbers has computational advantages regard-
ing continuous R-to-R-functions. The general situation for complete metric
spaces is more complicated. Yet very often we can find similar efficient rep-
resentations for complete metric spaces. We do not delve into this in all
detail, but we illustrate the basic idea.

DEFINITION: Given a metric space (X, d), let (Un)n∈N be a family of open (or
neighborhood) covers where (i) Un consists of inhabited sets of diameter less
than 2−n (ii) Un is star-finite (iii) Un+1 is a (star-finite) refinement of Un for
each n∈N . Then we call (Un)n∈N a regular star-finite development of (X, d).
(END OF DEFINITION)

Suppose we have a complete metric space (X, d) and a regular star-finite de-
velopment (Un)n∈N of (X, d). By the previous paragraph, this should not be a
rare occurrence at all. Then we can build a spraid (V ,T# ) (with correspond-
ing (V, #, � )) representing (X, d), where V represents

⋃

n∈NUn (each basic
dot corresponds to an element of some Un, except for © ). This is much more
direct and efficient than the spread-representations of (X, d) given through
theorems 1.2.3 and 3.4.3.

In this situation we would like a general way to replace a o -morphism from
(V ,T# ) to another natural space (W ,T#2 ) by an equivalent � -morphism. We
are confident that most important cases will resemble proposition 2.3.2. One
direct example of this are of course the Euclidean spaces Rn and RN. But we
follow remark 2.3.2 a bit further to say something in general as well:

If (W ,T#2 ) is � -isomorphic to its ‘finite-intersection-of-touching-basic-dots
space’, then we can follow the proof of proposition 2.3.2 closely to see that
indeed a o -morphism from (V ,T# ) to (W ,T#2 ) is represented by an equivalent
� -morphism.

We leave it to the interested reader to further ponder on the efficiency of
different representations of complete metric spaces.
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4.1 FROM NATURAL TO GENERAL TOPOLOGY

4.1.0 Invitation to general natural topology We think that from here one can
develop a substantial part of general topology constructively, using point-
wise concepts. We will however not tackle this significant undertaking in this
monograph (which is lengthy enough as it is), preferring to invite others to
do so. A very incomplete list of interesting subjects to cover/prove (some of
which are also partly covered in [Waa1996]):

1. Metric topology and (in)finite-dimensional topology (see [vMil1989] for
an excellent exposition of the latter)

(a) Star-finite covers and partitions of unity

(b) Topological and transitive notions of locatedness

(c) Universal metric spaces and isometric (normed linear) extensions

(d) Absolute retracts, Dugundji Theorem, Michael Selection Theorem

(e) Compactification

(f) Dimension theory and fractals

(g) Topological manifolds

(h) . . .

2. Algebraic topology, homotopy theory, . . .

3. Non-metric topology, topological lattice theory, separation axioms, . . .

4. Topological groups

5. Topological model theory

6. . . .

The list is probably easily expandable, since so little of classical general
topology has been charted constructively. Apart from mathematics, this un-
dertaking will have importance also for physics, we believe.

The relation to physics is one aspect that we wish to examine just a little bit
more in this monograph, in our next and final section.
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4.2 NATURAL TOPOLOGY AND PHYSICS

4.2.0 A philosophical apology This section is essentially philosophical in na-
ture, although it employs mathematics as a vehicle. Its purpose is more to
raise questions, than to give answers. The reader should ideally look at these
questions with an open mind, to consider whether they merit more attention
than usually given. Although some issues in this section are speculative to a
certain degree, the author feels it would be a pity to ignore them.

4.2.1 The strained relation between finiteness and infinity One could argue
that all constructive troubles regarding the foundations of mathematics stem
from one strained relation: the one between finiteness and infinity. Brouwer’s
critique of CLASS can be summarized as: ‘the notion in CLASS of infinity as
a completed entity is fundamentally unsound’. According to Brouwer and
other (pre-)intuitionists, we can only construct N as a ‘potentially infinite’
set, that is: growing in time beyond any fixed boundary, as time progresses
(potentially) infinitely.

From the past century it becomes clear that the mathematical problem for
‘infinitism’ (denoted here as INFI) is to build a foundationally sound and sat-
isfying theory. This has proved to be difficult mathematically, philosophically
and not in the least socially because of the added difficulty to get mathe-
maticians to agree on what is ‘foundationally sound’ and what is ‘satisfying’.

Potential infinity is also contested by some, a position called (ultra)finitism
(denoted here as FINI).58 The mathematical problem for FINI is the same: to
build a foundationally sound and satisfying theory. This has proved to be
difficult also -apart from the social factor mentioned above- because of the
mathematical and philosophical troubles that arise when trying to fix a good
upper bound on N.

It should be clear that the strain between INFI and FINI also has direct roots
in physics. The ‘simple’ questions: ‘What is time?’ and ‘Is the universe
(fundamentally) finite?’ have not been answered to any satisfactory degree,
as far as we are aware.

It is no surprise therefore, that a lot of ‘action’ in the foundational debate
takes place in the arena where we go from finiteness to infinity. For example,

58Well-known advocates are Alexander Esenin-Vol’pin and Edward Nelson.
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each axiom used or discussed in this paper (see the axioms’ section A.4 in
the appendix) is tailored to describe certain transitions from finiteness to
infinity or vice versa.59

And this transition is also precisely the thrust of ‘natural spaces’.

CONVENTION: In the following (as in the previous...) we silently assume the
world to be potentially infinite. The main reason to do so is that if the world
is fundamentally finite, then philosophically speaking we can limit ourselves
to discrete combinatorics, we think. So it seems more interesting for the
debate to assume INFI, even though FINI makes as much sense. (END OF

CONVENTION)

4.2.2 Which mathematics are suited for physics? Historically, it bears little
surprise that classical mathematics (CLASS) is the mathematics of preference
for physicists, which they generally use without question to develop physics.
However, the author believes that such an unquestioning use of CLASS is
difficult to support in the light of the developments in the foundations of
mathematics.

As we have described in this monograph, there are several good reasons to
doubt the inherent suitability of CLASS to describe our physical world. We
do not mean to say that it is impossible to do physics well in CLASS, since
any other approach can always be translated to a model in CLASS. But we
are concerned about suitability, and possible blind spots arising from the
exclusive use of CLASS. 60

As stated, we believe that from our current state of knowledge in the founda-
tions of mathematics one cannot simply choose one of the main alternatives
CLASS, INT, or RUSS as the preferred mathematics for physics. One of the
motivations for this paper is to show that natural topology yields a simple
model in CLASS of basic principles in INT, and to couple this model with an
explanation why we think that natural topology is better suited for physics
than the standard practice.

59‘From here to eternity and back again’.
60As an example of what we believe to be unawareness of constructive foundational is-

sues, one can take Hawking’s recent book ‘God created the Integers’ ([Haw2005]) in which
he discusses 31 great mathematicians of all times which according to him have been of fun-
damental importance to mathematics and physics. Brouwer is not among them, nor is he
even referenced, even though both his topological work and the foundational crisis that he
discovered have had a major impact.
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Yet as we have seen, this leaves unresolved another fundamental aspect of
the relation between physics and mathematics, namely the question what
reason we have to assume that reality is modeled better by a compact unit
interval than by a non-compact unit interval. Or by paradigm leap: what rea-
son do we have to assume that Nature is capable of producing non-recursive
real numbers? A strong case can be made, we believe, for a form of Laplacian
determinism in which Nature can only produce recursive sequences.61 This
belief is often written as CTphys, where CT stands for Church’s Thesis: ‘every
infinite sequence of natural numbers is given by a recursive algorithm’.

This question is debated in some circles, yet in the author’s eyes the debate
mostly lacks mathematical precision. In [Waa2005], a precise mathematical
setting is given in which CTphys can even be experimentally tested, although
the latter involves some serious computational effort and has not yet been
done. In addition there is no guarantee of result for this experiment. We will
comment on this further on, because even as a thought-experiment alone,
doubt is cast on the intrinsic validity of the standard probability approach
in science. Laplace himself already raised similar doubts but resolved them
using a model of ‘limited information’ ([Lap1776], also see [Lap1814]):

"Before going further, it is important to pin down the sense of the

words chance and probability. We look upon a thing as the effect of

chance when we see nothing regular in it, nothing that manifests

design, and when furthermore we are ignorant of the causes that

brought it about. Thus, chance has no reality in itself. It is nothing

but a term for expressing our ignorance of the way in which the

various aspects of a phenomenon are interconnected and related

to the rest of nature."

A different model of ‘limited information’ will also serve us well.

Apart from foundational probability issues, in [Waa2005], the open question
is raised whether RUSS could be a better model for physics than INT or CLASS.
What remains lacking in the literature (as far as we are aware) is a sharp
analysis of the possible consequences of CTphys for physics.

REMARK: In [Waa2005] a possible partial reconciliation between RUSS and INT

was left uninvestigated. We will describe such a partial reconciliation in this
section, using a model of limited information which resembles ‘type two ef-
fectivity’ (TTE). This partial reconciliation is relevant for physics, we believe,

61A similar belief seems to underly Stephen Wolfram’s ‘A New Kind of Science’ ([Wol2002]),
but without a sharp foundational motivation that we know of.
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in the following sense. Suppose that CTphys is one day seen to hold.62 Then
the reconciliation that we propose below offers an explanation why the phys-
ical world would still (appear to) conform to BT. (END OF REMARK)

4.2.3 Kleene’s function realizability and type two effectivity One of the de-
velopments with some similarity to natural spaces is Weihrauch’s type two
effectivity.63 TTE uses classical logic, and can therefore in our eyes not be
considered a constructive theory, yet there is a certain conceptual overlap
we believe.

Kleene’s function realizability used in a setting similar to TTE may give us a
constructive way to formally interpret INT as part of RUSS. We leave this as
an open question.64

The basic idea of TTE is not too difficult. One considers Turing machines
which can handle infinite input tapes, and which produce infinite output
tapes step-by-step (like Brouwer’s choice sequences). In other words, a given
machine Te is fed an infinite input sequence α (not necessarily recursive!)
and it is possible that after some finite time Te computes some first result
from an initial segment of α, which is then the first output value of a (possi-
bly) infinite output sequence β=Te(α). We refer the reader to the literature,
notably [Wei2000].

Since we wish to limit the scope of this article to our own limited level of
knowledge, we will not delve into TTE and Kleene realizability. Instead we
present a simple two-player game which we believe gives a similar (but in-
formal) model of INT in RUSS.

4.2.4 An informal two-player game representing INT in RUSS We describe a
game called ‘Limited Information for Earthlings’ (LIfE). We start out by intro-
ducing our two players, and describing their rules of conduct.

Player I is called ‘Giver of Digits’ (GoD), and player II is called ‘Humble Math-
ematician accepting Numbers’ (HuMaN).

The basic idea of the game LIfE is that GoD gives infinite sequences of num-
bers to HuMaN where all sequences are in fact given by a recursive algo-
rithm, but HuMaN does not know this. We list the rules of LIfE:

62For instance by a positive outcome to the experiment described in [Waa2005].
63TTE, to which of course many others have also contributed, see the literature.
64Which most likely has been answered already outside the author’s awareness, see also

paragraph A.0.0.
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L1 GoD has at her disposal all infinite recursive sequences (all α∈NN for
which there is a Turing algorithm which computes α). 65 GoD hands out
such sequences α to HuMaN, but is allowed to do so step-by-step without
disclosing any information about the algorithm computing α.

L2 GoD may lie in two different ways (and does). First by telling HuMaN

that not all sequences are recursive. Secondly, GoD is allowed to cheat
with information on the sequences and algorithms involved, if HuMaN

cannot know the difference. For example, if at stage n GoD has given
out only the finitely many values α(n) for a certain computable α, then
GoD may switch to any computable β with β(n)=α(n). However, during
the game and when playing a sequence, GoD may only switch a finite
number of times. Compliance to this can be determined post-game,
HuMaN remains ignorant.

On the other hand, GoD also can disclose part or all of the algorithm
computing α. This must of course be done consistently, so GoD can
only switch to other sequences conforming to earlier disclosures.

L3 The player HuMaN has to build mathematics from the sequences given
by GoD, but HuMaN can also at any time use his own recursively defined
sequences. HuMaN believes that GoD also has non-recursive sequences
at her disposal (although this is in fact false). GoD is obliged to give to
HuMaN as much initial values of a sequence α as HuMaN wants. (But
GoD is allowed to cheat by L2).

L4 HuMaN can only use constructive logic, implying for instance that ex-
istential statements and disjunction (A or B) must have constructive
content.

So what are the truths of LIfE for HuMaN? We think that for HuMaN, from our
perspective, LIfE is a model of Brouwer’s intuitionism. The sequences that
form HuMaN’s mathematical universe correspond to the universal spread σω,
or natural Baire space through Brouwer’s eyes. Brouwer’s motivation for the
Continuity Principle CP transfers directly to our game LIfE (we can even prove
it, see below). The same holds for BT, since we see no other way for HuMaN

to know that a certain B ⊂ N∗ is a bar on N other than by having constructed
a genetic bar on N from which B descends. (We can prove that if GoD is
omniscient, then ¬ ∃B⊂N∗[B is a non-inductive bar on N ] holds in LIfE.)

65This is equivalent to: ∃e∈N∀n∈N∃k∈N [T(e, n, k)∧Outc(k)=α(n)], if we use Kleene’s
T-predicate.
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Therefore, we think that the truths of LIfE for HuMaN (seen from our perspec-
tive) are precisely the theorems of INT. But from GoD’s perspective, every-
thing in LIfE is algorithmically determined, in other words LIfE is part of RUSS.

REMARK: The situation in which from an omniscient perspective sequences
are recursively determined, whereas from the limited-information perspec-
tive the mathematical truths are intuitionistic, might provide -should the
need arise66- a way to explain that nature ‘behaves inductively’, so to speak.

Or to put it differently: even if one day CTphys is believed to hold, then we will
be unlikely to encounter a Kleene Tree in nature, because nature itself is most
likely built inductively. The experiment in [Waa2005] however indicates a
(perhaps practically infeasible) way to expose the statistical anomalies which
would result from CTphys. This corresponds to a strange truth in LIfE: if HuMaN

is given enough time, HuMaN can discover that GoD is lying about having
non-recursive sequences, by using the Kleene Tree and our standard model
of probability for the testing of physics’ hypotheses.

Yet the real rub if one believes CTphys, is that our standard model of proba-
bility used to prove physics’ theories would seem to need serious revision.
Ironically, this model is largely due to Laplace. He could however point out,
in accordance to the quote above (4.2.2), that knowledge of the truth of
CTphys alters the state of our ignorance, and therefore by necessity also our
probability models. (END OF REMARK)

We now formulate our last meta-theorem concerning the game LIfE. It should
be seen as an alternative illustration of our attempts to further the ‘reunion
of the antipodes’ 67 in constructive mathematics, and not as an important
result in itself.

META-THEOREM:

(i) In LIfE, we can prove CP.

(ii) Suppose GoD is omniscient. Then we can prove ¬ ∃B⊂N∗[B is a non-
inductive bar on N ] for LIfE.

(iii) Given enough time, HuMaN can discover that by an overwhelming odds
ratio, GoD plays only recursive sequences.

PROOF: We prove this metatheorem in the appendix A.3.19. (END OF PROOF)

66Which probably occurs, we believe, if one day CTphys should be validated.
67Derived from Schuster’s (et al.) terminology ‘reuniting the antipodes’, see [Schu2001].
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COROLLARY: In CLASS, we can prove CP and BT for the game LIfE. (This would
seem to express the situation in TTE).

EXAMPLE: We show that, assuming GoD’s omniscience, the Kleene Tree (Kbr,
see 2.5.3) is not a bar on σ2 in LIfE even though all σ2-sequences in LIfE are
in fact recursive. For suppose HuMaN proves that a subset B⊂{0,1}∗ is a
bar such that Kbr⊆B. Then GoD, with omniscience, can choose a recursive
sequence α such that {α()}� ∩Kbr is infinite for any ≤N, where N is the
index such that α(N)∈B. (GoD plays a β step-by-step and at each step deter-
mines whether β(n)?0∩Kbr is infinite, if so then the next choice for β is a 0,
if not then the next choice is a 1. At a certain point in time M, HuMaN must
produce N such that β(N)∈B. At this point, GoD fixes α=β(N)?0, which is a
recursive sequence. We see that GoD has played by the rules.).

By the properties of α, we see that α(N)∈B,α(N) 6∈Kbr, in other words
B 6=Kbr.



APPENDIX

Additionals, Examples, Proofs

The appendix starts with closing remarks and personal acknowl-
edgements. Then we give some motivation and historical back-
ground of this paper, and a small recap. We add a brief history
of apartness topology.

The appendix is predominantly taken up by examples and proofs.
The examples are worked out in some (but not all) detail, leaving
some aspects as exercises to the reader. The proofs are worked out
in almost all details, yet occasionally we also leave some exercise
to the reader.

To be foundationally precise (although more precision is certainly
possible) we present and explain the axioms used and discussed in
this monograph.

We end with the bibliography.
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A.0 CLOSING REMARKS AND ACKNOWLEDGEMENTS

A.0.0 Some closing remarks Our introductory exposition of natural topology
ends here (bar the appendix). Although the author would have liked to be
able to present more, it proved to be a truly energy-consuming undertaking
to work out, in an elegant way, the precise machinery needed for natural
topology.
Not having been employed as a mathematician for the past 15 years, there is
a limit to how much energy one can reasonably spend on such undertakings.
However, this particular project is worthwhile for the author personally, since
it has answered some questions which kept on resurfacing after writing his
PhD-thesis in 1996.

We hope that others will also see some merit in this project. Experience
teaches that new concepts take time and effort to get used to, and the au-
thor is no exception. The effort which went into writing this study has pre-
cluded him from really studying various promising other concepts, such as
Abstract Stone Duality (see [Tay&Bau2009]) and formal topology (see e.g.
[Sam2003]). Also, any real comparative study should be done from a deeper
understanding of various related fields than the author possesses. He apol-
ogizes for his omissions-by-ignorance and inaccuracies on this count.

Reactions to this study are most welcome. Please do not hesitate to point
out errors, omissions, other points of view, interesting sources for an update
of the bibliography, solutions to questions, results of this paper which were
already proved elsewhere, etc.
On this last item, we should state that it is likely that some of our results
resemble or even equal results proved elsewhere. Not mentioning a source
in this respect only shows that the author is unaware of such a source, which
he will be happy to name when pointed out.
Finally, the appendix contains a ‘background and motivation’ section with a
short historical overview. This overview is likely to contain inaccuracies, and
suggestions for improvement are most welcome.

A.0.1 Acknowledgements of the author First and foremost, I would like to
thank Wim Couwenberg for his continuing interest and active participation
is this seemingly unending project. But what a beautiful project it is, in my
humble opinion, and it was sparked off by Wim’s insight and insistence that a
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simple presentation of ‘vlekjesruimten’ (‘dotty spaces’...which for marketing
reasons we have renamed natural spaces...) should be possible. Wim’s basic
idea was perhaps not so simple to develop as we had hoped, but now allows
for a nice and faithful classical interpretation of many results in intuitionistic
topology.
So the credit for the concept of ‘natural space’ goes to Wim, but more impor-
tantly his support and friendship have kept this project afloat. There were
several times when I was convinced that practically nobody is interested in
intuitionism, and that in natural spaces there was little worth mentioning
when compared to formal topology and other disciplines.
Wim convinced me otherwise, by repeating his questions about intuitionism
and other constructive disciplines and by becoming captivated by the con-
structive approach and foundations in general. Wim underlined the need for
a simple exposition of intuitionistic ideas for classical mathematicians, and
convinced me that this monograph fulfills a worthwhile role in that respect.
He also actively participated in thrashing out the first and most illuminating
versions of ‘natural space’ and ‘natural morphism’. His sparring role in many
other discussions has simply been invaluable.

It turned out however to be still a daunting task to get down to the nitty-
gritty and have everything in precise mathematical working order. Since
this nitty-gritty lies close to my PhD thesis, and the comparative study of
constructive foundations done in [Waa2005], it turned out that I had better
write this monograph in solo fashion.1 We decided this after a joint talk
last January, which revealed that the foundational complexities surrounding
‘natural spaces’ could not be disregarded. I can only hope that with this text
I have done justice to all our discussions (especially the fun of discovering
yet another snag!) and working together.

Second, I would like to dedicate this paper to Wim Veldman, who introduced
me to foundations, intuitionism and constructive mathematics, and was my
doctoral advisor during my PhD research. Wim Veldman’s precise and ele-
gant style reflects on his insistence that a structural framework for construc-
tive mathematics should be both elegant and foundationally precise. I hope
that this paper passes muster in that respect. Wim’s active work in intu-
itionism is also an inspiration, I took just one of his results as an important
illustration in this text.

Furthermore there are many people, too many to list individually, who have
contributed in some way or other to the epigenesis of this paper. I would like

1(Final) definitions, results, proofs, examples, and errors therefore are the author’s.
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to mention Bas Spitters who is always willing to discuss and explain formal
topology beyond my limited knowledge and understanding. Some twelve
years ago, Peter Schuster (et al.) already contributed his apt terminology
‘reuniting the antipodes’, which has been a continuing inspiration. Giovanni
Sambin wrote me some very kind words when I felt miserable for mistakenly
having claimed to have spotted an error in a formal-topology paper. The
tireless work of Douglas Bridges to carry on the program started by Bishop
has also played an important part. It is my hope that this monograph will help
to continue investigating ‘constructive mathematics’ in the spirit of Bishop,
by showing how to inductivize pointwise notions.

Perhaps one day the difference between Brouwer’s and Bishop’s approach
will be felt to be far less important than their correspondence. Studying
constructive mathematics in the pointwise style of classical mathematics
seems to me to remain the most attractive choice. I do however feel that a
transparent axiomatization similar to FIM is always called for, even though
it shouldn’t have to dominate the presentation. This is a matter of taste
also, but recent work in constructive reverse mathematics by various authors
(notably Ishihara, see e.g. [Ish2006], and Veldman, see e.g. [Vel2011]) has
shown the benefits of further explicitizing relative axiomatic dependencies.2

The support from my family and my friends, although mostly in other areas
than mathematics, has played a major role in this project. Finally, the love
of my wife Suzan and my daughters Nora and Femke (not to mention their
patience with this project), has been quite indispensable.

I would like to thank all these people mentioned above very sincerely.

(the author, july 2011)

A.0.2 Hommage to Brouwer, Kleene, Bishop and... One may also see this pa-
per as a hommage to Brouwer, Kleene and Bishop, but let us not forget all
those other mathematicians who have worked hard to both expand and sim-
plify mathematics. This is an ongoing collective endeavour, notwithstanding
differences of style, character and opinion. The bibliography, incomplete as
it may be, should serve to illustrate just how many people are dedicated to
developing constructive mathematics. Behind each name and reference lies
a body of related work which is left unmentioned, but with the help of the
internet should be easily findable.

2Veldman has also developed ‘Basic Intuitionistic Mathematics’ (BIM) as a formalization
comparable to FIM in which reverse intuitionistic mathematics can be carried out.
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A.1 BACKGROUND, MOTIVATION, AND RECAP

A.1.0 Background Much of theoretical mathematics is built on idealizations
which fail in real life. A simple example is that of a floating point representa-
tion of a real number  very close to 0, where the decision whether  = 0 or
 6= 0 can be needed for further computations. Theoretically this decision is
trivial, but in practice we cannot always determine whether  = 0 or  6= 0.
That is one situation where ‘applied mathematics’ comes in, with mathemati-
cians and computer scientists working to translate theoretical mathematical
ideas to ‘real life’ situations.

One often comes across excellent practical solutions, which are yet ad hoc in
character. People working in the field of applied mathematics do not seem
to consider this a problem, but we find it interesting to note that a more
coherent and unified approach is possible. This might hopefully shed some
new light on theoretical science as well, and help explain some important
ideas of intuitionism and constructive mathematics to the ‘working’ mathe-
matician who is used to classical mathematics.

This paper is concerned with such an approach, from the standpoint of topol-
ogy. A lot of work towards bridging the gap between theoretical and practical
mathematics has been done in what is known as constructive mathematics.
Although constructive mathematics in its essence is as old as mathematics
itself, one can still consider Brouwer to be its founding father. Brouwer was
the first to critically analyze the body of classical mathematics to come to
the conclusion that the principle of the excluded middle (PEM) could only
be maintained for infinite sets at the cost of constructivity. Brouwer sharply
demonstrated this mathematically, with various clever examples, showing
e.g. that for an arbitrary real-valued continuous function ƒ on the real in-
terval [0,1] one cannot always construct an  in [0,1] where ƒ assumes a
maximum. By the very nature of his critique, the foundations of mathematics
in general, and especially the then popular and newly evolving mathemat-
ical discipline of set theory (started by Cantor) were shaken badly. It must
be said that already Kronecker and Poincaré had serious reservations about
Cantor’s treatment of infinity, and also among his contemporaries Brouwer
was not the only one with constructive views.

However Brouwer, the master topologist, did not content himself with crit-
icism alone. From 1912 to roughly 1927 he developed a new constructive
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framework for mathematics, called intuitionism. One of his insights was
that an everywhere-defined real function (to the reals) has to be continu-
ous (we rediscover the reason for this in this paper). But he also encoun-
tered some difficult obstacles in building this constructive framework. He
presented his solutions to these obstacles as theorems, albeit with rather
unorthodox proofs, in none too easy language to the mathematical commu-
nity of his time. This mathematical community was mostly unreceptive to
Brouwer’s critique of the classical foundations, and unwilling to change its
comfortable views on classical mathematics as being the only viable frame-
work for doing math. Hilbert (who in 1928 ousted Brouwer from the board of
the Mathematische Annalen, showing how deep his resentment of Brouwer’s
views had become) is famously quoted to have said: ‘No one shall expel us
from the paradise that Cantor created for us’.

Deeply disappointed, Brouwer more or less retreated in his own activities
and never regained his former prolific productivity. Still, Brouwer had fol-
lowers, notably his student Heyting who simplified and formalized his men-
tor’s intuitionism to make it more accessible. Later on, the computability
expert Kleene became a supporter of Brouwer’s ideas. Kleene managed
to axiomatize intuitionism in a very clear way in [Kle&Ves1965], to prove
relative consistency (through realizability) which further opened the door
for interested mathematicians. Kleene discovered that under these axioms
Brouwer’s notion of ‘choice sequence’ could not coincide with the notion of
‘computable sequence’, a result which will also concern us in this paper since
the ‘true’ reason for this is topological in nature. Namely in recursive math-
ematics the Cantor space {0,1}N is not compact. Kleene thus also showed
that Brouwer’s Fan Theorem (FT) (stating compactness of the Cantor space
{0,1}N) was truly an axiom, in the sense that it could not be proved from
the other axioms.

Around that time, Bishop also became convinced of the intrinsic worth of the
constructive framework. However, Bishop was not attracted to the founda-
tional discussions, involving a great deal of logic, logicism and axiomatics.
Bishop wanted to build a solid body of constructive mathematics, picking
up where Brouwer had left around 1930, and also in such a way that the
results would be acceptable to classical mathematicians as well. By this
time, computers had already entered the scene, and mathematical aware-
ness of computability and computational issues had increased the reception
of constructivism. Bishop-style mathematics (BISH) has increasingly become
popular, not in the least because of its refocussing on ‘plain mathematics’
instead of logic and foundations, and its down-to-earth approach. This ap-
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proach started with a comprehensive treatise of constructive analysis, in
the context of metric spaces ([Bis1967], [Bis&Bri1985]). Bishop stated that
there was little need for general topology, and that ‘mystic’ axioms like the
Fan Theorem (although classically true) were unnecessary if one chose the
right definitions. However, it was later shown ([Waa1996], [Waa2005]) that
Bishop’s definitions practically imply the Fan Theorem. Bishop’s work is car-
ried on by many, including notably Bridges. Brouwer’s intuitionism seems to
attract less mathematical attention, yet is carried on notably by Veldman.

From the 1960’s on, a parallel development of many authors (Scott, Martin-
Löf, Fourman, Sambin, et al.) led to the field of domain theory, pointfree
topology and formal topology. Actually already Freudenthal started with (in-
tuitionistic) pointfree topology in [Fre1937], reacting to Brouwer and using
ideas of Alexandroff and Hurewicz. In recent developments in formal topol-
ogy, a number of the above issues have been dealt with in such a way that
one can view this as a reunion of parts of the different approaches. This
topological setting is no coincidence, since Brouwer was a brilliant topolo-
gist, and Brouwer’s intuitionism was built with the backing of his topological
expertise. Bishop seems to have underestimated the topological necessity
of Brouwer’s Fan Theorem in order to build a constructive model of analysis
in which continuous functions on compact spaces are uniformly continuous.

A.1.1 Motivation and some results The accomplishments of formal topology
notwithstanding, we feel that formal topology in many of its current pre-
sentations (a growing number of papers and tutorials in a formal categori-
cal style) lacks the intuitive appeal of both Brouwer and especially Bishop.
Much of this is due to the fact that both Brouwer and Bishop concentrated on
‘points’ and ‘spaces’ in the usual mathematical way, and limited themselves
to some form of separability (enumerable bases, enumerable dense subsets)
in order to achieve constructivity. Also, there are still some foundational con-
cerns surrounding compactness which we feel merit attention.3

Interestingly enough, such a separability approach is ideally suited for a sim-
ple and elegant version of pointfree topology which we think deserves the
name ‘natural topology’ for three reasons. First of all, we think that natural

3An alternative approach called Abstract Stone Duality (ASD) was recently developed by
Taylor and Bauer, see also [Tay&Bau2009]. This development seems partly motivated by a
search similar to ours for a simpler and more directly appealing approach to constructive
topology. However, ASD draws on many areas in which the author is not proficient, and
therefore comparison here is not possible. Kalantari and Welch (see e.g. [Kal&Wel2006])
have also been developing related concepts in a recursive-computable framework.
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topology is ideally suited for dealing with the study of nature (in other words
physics...), since natural phenomena can only be observed and measured by
scientists in a manner corresponding to these definitions. Secondly, in natu-
ral topology one builds a space of points in a natural way, and immediately
sees a topology on this space arising from the construction, matching the
space. Thirdly, we believe this allows for a natural pointwise style of mathe-
matics, now that the most foundational aspects have been established.4

Another advantage of this approach we hope to show in this paper: the
easier translation of existing (intuitionistic) results to this setting. One such
result is that all complete separable metric spaces are representable as a
natural space. Another is that all natural spaces arise as a quotient space
of Baire space, something which Brouwer already incorporated into his the-
ory of spreads. Still another important translated result is the Heine-Borel
property for inductive covers of subfanns (HB∝ , see 3.2.1). This relates to
(and generalizes we believe) the result in [Neg&Ced1996] concerning the
Heine-Borel property for (formal-topological) inductive covers of the formal
real interval [α, β]. As an icing to the cake we prove (in BISH) the metrizabil-
ity of star-finitary natural spaces. The corresponding intuitionistic result from
[Waa1996] has not been transposed to a formal-topological setting (as far as
we are aware). The constructive theorem seems comparable to the classical
metrization results of strongly paracompact spaces.

Since we can define natural spreads and fans (and even spraids and fanns),
we are led to the meta-theorem that natural Baire spreads (fans) corre-
spond precisely to Brouwer’s spreads (fans). Moreover, natural morphisms
correspond precisely to Brouwer’s spread-functions. Natural morphisms are
suited, we think, for computational purposes also.5 The definition of spraids
and fanns is made to facilitate both computational practice and (topological)
lattice theory. For nice papers on computation and constructive topology
see [GNSW2007], which also contains a large list of references and detailed
historical background, and [BauKav2009]. In [BauKav2009], recommenda-
tions are made for efficient exact real arithmetic, which seem to match our
definition of σR and � -morphisms quite closely.

A.1.2 To recap In this monograph we develop a simple topological framework,
which can serve as a theoretical yet applicable basis for dealing with real-
world phenomena. The paper is self-contained, but some familiarity with

4This monograph needs to focus on foundations also, which makes for less easy reading.
5In formal topology mappings are usually defined as multivalued relations, which seems

computationally more complicated, but the author’s knowledge on this is again limited.
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basic topology is probably necessary for understanding its build-up. It turns
out that this approach covers not only the real numbers, but in fact all ‘sep-
arable spaces’, meaning topological spaces having an enumerable dense
subset (for R consider e.g. Q).

In the first half of the paper we present the framework and formulate the ba-
sic theorems and properties. We discuss the strong connection with applied
mathematics and physics, and give examples of computational and topolog-
ical issues in applied mathematics. When developing the theory further, we
discover some foundational issues surrounding compactness, leading also to
questions on the topological character of our physical universe.

The second half of the paper is therefore more foundational in nature, ex-
ploring possible avenues to resolve these issues. Links with existing frame-
works and theories are discussed, especially classical mathematics (CLASS),
recursive mathematics (RUSS), intuitionism (INT), Bishop-style mathematics
(BISH), and formal topology. Natural topology can also be seen as a sim-
plified version of formal topology, or of domain theory. The simplification
fits in the historical line of simplification efforts of Heyting, Freudenthal,
Kleene, Scott, Bishop, Martin-Löf, Bridges, Veldman6 and many others (see
also Troelstra’s and van Dalen’s standard treatise on constructive mathemat-
ics [Tro&vDal1988]).

In the final section, we return to discuss the relation with physics. We think
that the question of which mathematics to choose for physics deserves more
attention. We believe that natural spaces provide a strong conceptual refer-
ence frame for physics. Compactness issues also play a role here, since the
question ‘can Nature produce a non-recursive sequence?’ finds a negative
answer in CTphys. CTphys, if true, would seem at first glance to point to RUSS

as the mathematics of choice for physics. To discuss this issue, we wax more
philosophical. We present a simple informal model of INT within RUSS, in a
two-player game called ‘Limited Information for Earthlings’ (LIfE) with play-
ers ‘Giver of Digits’ (GoD) and ‘Humble Mathematician accepting Numbers’
(HuMaN). We also point to [Waa2005] for a physical experiment which could
cast light on CTphys.

In the appendix we work out more interesting details regarding the examples
given in the first half of the paper. One of these examples is the line-calling
decision-support system Hawk-Eye, for which we recommend a LET feature.
The appendix also contains most of the proofs.

6Wim Veldman’s lecture notes [Vel1985] (in Dutch) are a very nice exposition of intuition-
istic mathematics, one hopes for an English translation some day.
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We hope that this monograph will serve as a welcoming introduction to the
varieties of (constructive) topology. Our aim is to compare these varieties in
such a way that their presentation is simplified and their mutual differences
are reduced to their essence. One result that we are happy to mention is
that the presented framework of natural spaces gives a faithful classical rep-
resentation of basic intuitionistic results.

Looking at the results in this monograph, the author comes to the conclusion
that Brouwer’s concepts and axioms are still of exceptional elegance and
relevance for constructive mathematics. In fact INT is the only constructive
theory we know with an elegant pointwise approach which solves all the
compactness issues that we studied in chapter three. Perhaps even more
relevant: the axioms of INT are precise and appeal directly to the author’s
mathematical intuition. This monograph should therefore also be seen as
strongly supportive of further development of INT.

A.1.3 Brief historical note on apartness topology We can say that apartness
topology started with Brouwer, and was given a pointfree flavour by Freuden-
thal in [Fre1937]. This since intuitionistic topology practically entails all
the phenomena of apartness topology. Troelstra also studied intuitionis-
tic topology in [Tro1966]. Martin-Löf provided a strong germ for construc-
tive pointfree topology in [M-Löf1970] (also see A.1.0). In [Coq1996], Co-
quand even asks the question whether starting formal topology from an in-
equality relation (apartness) would be worthwhile. Kalantari and Welch (see
e.g. [Kal&Wel2006]) have been developing related concepts in a recursive-
computable framework.

As far as we can tell, the first definition of ‘apartness topology’ and ‘apart-
ness space’ was given in [Waa1996], a study of modern intuitionistic topol-
ogy which was set up in such a way as to attract attention also from people
in Bishop’s school. Apartness topology plays a central role in [Waa1996], just
as in this account. The definition in [Waa1996] was given in BISH, but with
the use of CP in mind to arrive at basically the same topology as the natural
topology of the current paper.7

Some years later, Bridges and Vî̧tă developed a related but different notion,
also called apartness topology (or apartness spaces), which does not depend

7The idea of ‘apartness topology’ came from an earlier study of intuitionistic model theory
(see [Vel&Waa1996]), where the current author discovered that first-order sentences using
only apartness can describe topological properties, due to the presence of CP. This gives a
correspondence between intuitionistic model theory and classical topological model theory.
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on the use of CP (see [Bri&Vî̧t2011]). There have been a number of articles
by different authors on this different notion of apartness topology since then.
In [Bri&Vî̧t2009] there is also a treatment of lattices and pointfree machinery,
but it seems different from the treatment here.

These articles do not, as far as we are aware, address the question whether
we can find interesting apartness spaces which are not already equivalent to
a metric space. As we show in this paper, non-metrizable apartness spaces
arise naturally in the context of infinite-dimensional topology, an area where
constructive methods should be fruitful but which has been somewhat lag-
ging behind in constructive topological investigations, we believe.

The above should illustrate that the main ideas in this monograph can al-
ready be found in older sources. What natural topology has to offer, is a new
combination of these ideas (with a high level of detail). Much of classical
separable topology (and mathematics) is still uncharted from a constructive
perspective. There is in other words yet a nice long road ahead of us.
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A.2 EXAMPLES

A.2.0 Hawk-Eye (See 1.3.0:) The line-calling decision-support system Hawk-Eye

was critically analyzed by Collins and Evans in [Col&Eva2008], in which they
raise a concern which resembles our claim (repeated below) and many other
concerns about error margins and measuring. However, the precise nature
of the problem associated to what they call ‘digitizing’ (making a decision
based on continuous data) is left undiscussed. We therefore state explicitly:

claim Hawk-Eye, irrespective of the precision of the cameras, will systemat-
ically call OUT certain balls which are measurably IN or vice versa.

To see why this is so, it is enough to notice that any real measurement and
calculation derived from this measurement, resulting in either IN or OUT, cor-
respond to a function from R∗

Q
to {in,out}. For simplicity’s sake let’s put the

border of a line at the natural real number 0∈Rnt, where a given trajectory
end  being IN corresponds model-wise to ≥ 0. To give Hawk-Eye credit, we
will assume that trajectories are calculated mathematically correctly from
data entered. Now the situation for a ball to just touch or just not touch the
line can be translated by looking at a shrinking sequence of rational intervals
hovering around 0.

This means that Hawk-Eye, for each such shrinking sequence, must yield ei-
ther IN or OUT, after only a finite number of intervals in the sequence (a Wim-
bledon match must be finished before August, say). Taking the shrinking se-
quence  = [−1,1], [−12 ,

1
2], [−

1
4 ,

1
4] . . . we determine Hawk-Eye’s decision on

, say IN, which is arrived on say at interval [−2−m,2−m]. Clearly then there
are balls whose translated trajectory starts out with [−1,1], [−12 ,

1
2], [−

1
4 ,

1
4],

. . . , [−2−m,2−m], which are nonetheless OUT by a margin of 2−m−1 (surely
measurable, if cameras of Hawk-Eye can measure up to [−2−m,2−m]).

The claim is not per se important. Hawk-Eye admits to an inaccuracy of
around 3 mm.8 This is usually blamed on inaccuracy of the camera system.
But regardless of camera precision we cannot expect to solve the topolog-
ical problem that there is no natural morphism from the real numbers to a
two-point space {IN,OUT} which takes both values IN and OUT. To make this
precise we define:

8Still, one sees ‘sure’ decisions being pronounced by the system where the margin is
smaller. A Nadal-Federer match in which this occurred for a margin of 1 mm attracted some
media attention to Hawk-Eye’s (in)accuracy.
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DEFINITION: For m,n∈N we write m(n) for the sequence m, . . . ,m of length
n. Let T2nt = {0(n) |n∈N}∪{1(n) |n∈N} = {0}∗∪{1}∗. Similarly, let T3nt =
{0}∗∪{1}∗∪{2}∗. Put 2(s)#0(m)#1(n)#2(s) for all n,m, s > 0. Likewise
put 0(m)�0(n), 1(m)�1(n) and 2(m)�2(n) for all m ≥ n. Then (T2nt , #, � )
and (T3nt , #, � ) are pre-natural spaces with as maximal dot the empty se-
quence of length 0. Write (2nt,T2nt) and (3nt,T3nt) for the corresponding
natural spaces, which up to equivalence contain precisely two (resp. three)
points 0 = 0,00,000, . . . and 1 = 1,11,111, . . . (and resp. 2 = 2,22,222, . . .).
(END OF DEFINITION)

From theorem 1.1.2 it follows directly that any natural morphism ƒ from Rnt

to 2nt is constant (meaning either ƒ ()≡0 for all  in Rnt or ƒ ()≡1 for all 
in Rnt). So there is no surjective natural morphism from Rnt to 2nt.

REMARK: This is not the end of the line though for Hawk-Eye-like applica-
tions. One restriction on morphisms can and should be relaxed in cases like
Hawk-Eye, namely the restriction that morphisms respect the apartness rela-
tion #R. By this we mean that we should turn to morphisms on the unglueing
σR

∝ of σR, where σR

∝ is equipped with the finer apartness #ω given by #ωb
iff ( 6�b∧b 6�).

If we turn to the natural space R#ω derived from (σR ∝, #ω , � ), then we see that
there are many surjective morphisms from R#ω to 2nt. This means that we
can for example represent the situation ∀∈R[> 0∨< 1] by a morphism
h from R#ω to 2nt such that h()=0 implies > 0 and h()=1 implies < 1.
(END OF REMARK)

So finally, how should Hawk-Eye be amended? Clearly our recommenda-
tion to Hawk-Eye is to introduce a LET-feature. Suppose for simplicity that
Hawk-Eye’s camera-cum-software margin of error can safely be taken to be
2.5 mm ≈ 2−8 m.9 Since Hawk-Eye calculates the trajectory end  of a ball
from several camera measurements, one should conclude these calculations
up to reaching an interval n=[, b] of width 2−8 m (where [, b]=[ s

29 ,
s+2
29 ]

for some s∈Z). Then one checks whether 0∈n, and if so, Hawk-Eye should
return the value LET, which in turn should lead to a replaying of the point in
the tennis match. If 0< (or likewise b< 0), then Hawk-Eye can safely return
the value IN (or likewise OUT), with the same consequences for play as are
currently in use.

9There have been concerns about Hawk-Eye’s accuracy in this respect, raised by Collins
and Evans in [Col&Eva2008].
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This illustrates our remark above, since adapting Hawk-Eye in this way corre-
sponds to creating a morphism from R#ω to (3nt,T3nt). This type of problem
occurs extremely frequently of course in applied mathematics, and one may
think we are merely going over well-trodden grounds. But the topological
cadre of reference is seldom explicitized, and systems like Hawk-Eye illus-
trate that awareness of this type of problem can still be improved.

As for visualizing our recommendation for Hawk-Eye, why not introduce a
narrow gray line (representing LET) separating the outer part of the white line
(representing IN) from the green (representing OUT). The gray line should be
half on the former white band, and half on the former outer green expanse.
Then the LET-situation occurs only if the ball is calculated to be largely in the
outer green, but with a small overlap of gray and no overlap of white. This
should be easily understandable to public and players.

A.2.1 Non-archimedean intermezzo: Cp For p a prime number, the complex
p-adic numbers Cp can be defined constructively by first defining a valuation-
norm on the algebraic p-adic numbers Ap = {m |m∈N}, and then defining
Cp to be the metrical completion of Ap (see [MiRiRu1988]). Cp has an inter-
esting feature which relates to our study of natural representations of metric
spaces: it is a complete metric space which is not spherically complete .
There is a series of shrinking closed spheres (B(cm, qm))m∈N where cm∈Ap,
qm∈Q, B(cm+1, qm+1)⊆B(cm, qm) for all m and yet

⋂

m∈NB(cm, qm) = ∅.

This means, that if for Cp we proceed creating a natural space (V ,T# ) as
in remark 1.2.3, taking V = {B(m, q) |q∈Q,m∈N}, then the ‘shriveling’ se-
quence (B(cm, qm))m∈N becomes a ‘new’ point in V which has no correspond-
ing point in Cp. In fact we do not know whether this (V ,T# ) is metrizable.
Classically, (V ,T# ) can be weakly metrized as an extension of Cp:

(in CLASS:) For p, q∈V, put d(p, q) = limn→∞ d(pn, qn), where for n∈N we let
d(pn, qn) =

D
inf({d(, y) |∈pn, y∈qn}). (pn, qn are closed spheres in (Cp, d).).

In CLASS, the limit exists for elements of V, and defines a metric which ex-
tends the non-archimedean metric d on Cp.10 We think (V , d) is spherically
complete. However, (V , d) is not separable (so d does not metrize (V ,T# )),
and we do not know whether an alternative (constructive, separable) metric
exists which might enable us to work with some form of spherical completion

10Consider that shriveling sphere-sequences p, q converge downwards to a limit radius
r1, r2. If r1 < r2 then d(p, q)=d(pn, qn)> r2 for some n. If r1= r2 > 0 then d(p, q)=0 or
d(p, q)=d(pn, qn)> r2 for some n. If r1= r2=0 then p, q∈Cp.
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of Cp constructively as well. Our metrization theorem for star-finitary spaces
(thm. 4.0.8) suggests that one should find out whether (V ,T# ) is star-finitary.
Whether all this leads to new topological spaces, we do not know. Cp with
the usual metric topology is homeomorphic to Baire space, this might also
hold for the (V ,T# ) indicated here.11

A.2.2 The Cantor function and other morphisms to the binary reals (Conti-
nued from paragraph 1.3.2). To show the equivalence of the binary reals
with the reals allowing a binary expansion, let {0,1}∗ be the set of finite
sequences of elements of {0,1}. Now natural Cantor space is the nat-
ural subspace (C,Tnt) of Baire space N formed by the pre-natural space
({0,1}∗, #ω , �ω) and its set of points C (see paragraph 2.0.3 for the precise
definition). We also write σ2 for the Cantor space.

Let us inductively define a surjective � -morphism ƒevl,2 from C to [0,1]bin.
First we put ƒevl,2(©ω)=©[0,1]=[0,1]∈RQ,bin . Now let =0, . . . , n−1∈{0,1}
where ƒevl,2() has been defined and equals [d, e]∈RQ,bin . Then, with ?0 =
0, . . . , n−1,0 and ?1=0, . . . , n−1,1 we define ƒevl,2(?0) =

D
[d, d+e2 ] and

ƒevl,2(?1) =
D
[d+e2 , e]. This inductively defines ƒevl,2 on all of {0,1}∗.

The reader can simply verify that ƒevl,2 is a surjective morphism from C to
[0,1]bin. Next, we pull back the apartness #R on [0,1]bin to ({0,1}∗, #ω , �ω)
by stipulating, for , b∈{0,1}∗ that #Rb iff ƒevl,2()#Rƒevl,2(b). Then it is easy
to see that ƒevl,2 is a � -isomorphism from the natural space derived from
({0,1}∗, #R , �ω) to [0,1]bin.

Completely similar, we define σ3 = ({0,1,2}
∗, #ω , �ω) and a surjective mor-

phism ƒevl,3 from σ3 to [0,1]ter, such that pulling back #R using ƒevl,3 we see
that ƒevl,3 is a � -isomorphism from σ3,ter =D ({0,1,2}

∗, #R , �ω) to [0,1]ter.
We have use for an inverse of ƒevl,3 given explicitly, we therefore define
the appropriate morphism ƒ−1

evl,3
inductively. Put ƒ−1

evl,3
([0,1])=©ω . Next, sup-

pose ƒ−1
evl,3
() has been defined for a given interval =[ n

3m ,
n+1
3m ]∈RQ,ter . Then

we define: ƒ−1
evl,3
([ n+03m+1 ,

n+1
3m+1 ]) = ƒ−1

evl,3
()?0, ƒ−1

evl,3
([ n+13m+1 ,

n+2
3m+1 ]) = ƒ−1

evl,3
()?1 and

ƒ−1
evl,3
([ n+23m+1 ,

n+3
3m+1 ]) = ƒ

−1
evl,3
()?2.

The Cantor function ƒCn is most easily defined as a morphism from σ3 to
σ2 . First take =0, . . . , n−1∈{0,2}∗. For all  < n= lg() let b=min(,1).
Then put ƒCn() =

D
b0, . . . , bn−1. Next let b∈{0,1,2}∗, b 6∈{0,2}∗. Determine

∈{0,2}∗ and c∈{0,1,2}∗ such that b=?1?c. Let m= lg(c), and let 0(m)
be the sequence 0, . . . ,0 of length m. Put ƒCn(b) =

D
ƒCn()?1?0(m).

11Perhaps a nice subject for a Master’s thesis?
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Using ƒ−1
evl,3

and ƒevl,2, this completely defines the Cantor function as a � -
morphism from [0,1]ter to [0,1]bin. This morphism cannot however be ex-
tended to a � -morphism from [0,1] to [0,1]bin, for the reasons described
in chapter two. Proposition 2.3.2 shows how we can represent the Cantor
function as a � -morphism from [0,1] to [0,1].

We can however also define the Cantor function as a o -morphism from [0,1]
to [0,1]bin. We leave this as a non-trivial exercise to the reader interested in
applied mathematics and representation issues. For our narrative we turn to
the promised property that any morphism ƒ from [0,1] to [0,1]bin is ‘locally
constant’ around the ƒ -original of a binary rational n

2m (n≤ 2m).

PROPOSITION: Let ƒ be a o -morphism from [0,1] to [0,1]bin such that ≤Ry
implies ƒ ()≤Rƒ (y), for , y∈[0,1], and such that ƒ (0)≡R0 and ƒ (1)≡R1.
Suppose z∈[0,1] is such that ƒ (z)≡R

1
2 . Then there is a rational interval

[, b]∈RQ such that ƒ ()≡R
1
2 for all ∈[, b].

PROOF: Clearly we can find a sequence z′=([n, bn])n∈N of strictly shrinking
rational intervals such that z≡Rz

′ (n <n+1 <bn+1 <bn for all n∈N). We
determine a value of ƒ (z′) which is not equal to the maximal dot ©, say
ƒ (z′(m))≺©. Then we have either case 0: ƒ (z′)(m) �R [0,

1
2], then since

ƒ (z′)≡R
1
2 and ƒ is ≤R-preserving, we see that ƒ ()≡R

1
2 for all ∈[bm, bm−1]

or case 1: ƒ (z′)(m) �R [
1
2 ,1], then since ƒ (z′)≡R

1
2 and ƒ is ≤R-preserving,

we see that ƒ ()≡R
1
2 for all ∈[m−1, m]. (END OF PROOF)

COROLLARY: [0,1] and [0,1]bin are not isomorphic.

We end with a number of statements which we do not prove (exercise):

(i) The n-ary reals are isomorphic to the m-ary reals, for n,m∈N.

(ii) The n-ary reals can be identically embedded (meaning ƒ ()≡R for all
) in the m-ary reals iff there is a b≥ 1 in N such that m divides nb.

(iii) Addition and multiplication cannot be represented as morphisms from
[0,1]bin to itself, in other words the n-ary reals are not closed under
addition and multiplication. This makes the n-ary reals unsuited for
computational purposes, in our eyes.

(iv) Adding the extra digit −1 to the digits 0, . . . , n−1 solves the current
problems with n-ary digital representation.

We believe the above to be of interest for representation issues of real num-
bers. One can also entertain an independent topological interest, see theo-
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rem 1.4.0 on pathwisent connectedness and the next example of ContraCan-
tor space. Finally, we note that the ternary reals play a very nice role in the
proof of our metrization theorem for star-finitary spaces, see A.3.18.

A.2.3 ContraCantor space and [0,1]-embedded Cantor space
From [Kle&Ves1965] we can directly define a decidable countable subset
(derived from what Andrej Bauer in [Bau2006] aptly calls the Kleene Tree)
Kbr = {kn |n∈N} of {0,1}∗ such that kn�ωkm implies n =m for all n,m∈N
and in addition such that in RUSS {[k] |k∈Kbr} is an open cover of (C,Tnt)
which has no finite subcover.

We use Kbr to define ContraCantor space, which is a compact subspace C[0,1]
of [0,1] such that if we write C[0,1] for the Cantor set (which is the standard
embedding of Cantor space in [0,1]), we see: dR( C[0,1] ,C[0,1])=0 and yet in
RUSS we also have dR(,C[0,1])> 0 for ∀∈ C[0,1] .

First let us define C[0,1] . For this we first embed C=σ2 in σ3 , using the
‘doubling’ morphism ƒ·2 defined by: ƒ·2(0, . . . , n−1)=2 ·0, . . . ,2 ·n−1, for
0, . . . , n−1 in {0,1}∗. Clearly ƒ·2 is an embedding morphism from σ2 to σ3 .
We put C ·2= ƒ·2(C). Next, we combine ƒ·2 with the morphism ƒevl,3 from σ3 to
[0,1]ter, which we defined in the previous example.
We now put: C[0,1] =D ƒevl,3 ◦ ƒ·2(C).

Next we define the ContraCantor set C[0,1] , by first considering the subspace
σ3,contr = {ƒ·2(kn)?1?α | kn∈Kbr, α∈σ3} of σ3 . Notice that σ3,contr lies apart
from ƒ·2(C), but at distance 0. In RUSS, σ3,contr is (the point set of) a fan. In
INT and CLASS, σ3,contr is not closed, and to obtain a fan we must move to the
closure of σ3,contr.
We transfer this situation to [0,1] by letting C[0,1] be the metrical closure of
ƒevl,3(σ3,contr).

PROPOSITION: C[0,1] is a BISH-compact subspace of [0,1] with the property
that dR( C[0,1] ,C[0,1])=0 and yet in RUSS also dR(,C[0,1])> 0 for all ∈ C[0,1] .

PROOF: By definition C[0,1] is complete and totally bounded, therefore BISH-
compact, just like the Cantor set C[0,1] . Clearly dR( C[0,1] ,C[0,1])=0. In RUSS, we
have C[0,1] = ƒevl,3(σ3,contr), since σ3,contr is already complete. This we see by
considering in RUSS a convergent sequence (n)n∈N in σ3,contr. We construct
a ‘shadow’ sequence (yn)n∈N in C ·2= ƒ·2(C) thus: for each n∈N , n equals
ƒ·2(km)?1?α for certain m∈N, α∈σ3 . We now put yn= ƒ·2(km)?0 (where 0 is
the infinite sequence 0,0, . . . ∈σ3).
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Clearly (yn)n∈N is convergent in C ·2, we consider the limit y∈C ·2. There is
z∈C such that y= ƒ·2(z), and since Kbr is a bar on C, there is n∈N such that
z�kn. This however implies that there is N∈N such that m� ƒ·2(kn)?1 for
all m≥N, showing that (n)n∈N converges to a limit in σ3,contr.

Therefore we obtain in RUSS: dR(,C[0,1])> 0 for all ∈ C[0,1] . (END OF PROOF)

This situation in RUSS, where two compact spaces have distance 0 and yet
are apart, is well known. Perhaps less known is how it bears on our discussion
of inductive morphisms and the pointwise problems arising in BISH even if we
inductivize our definitions, see paragraph 3.4.0.

A.2.4 The spraid of uniformly continuous real-valued functions on [0,1]
Brouwer already showed how to build the space Cnif([0,1],R)nt of uni-
formly continuous real-valued functions on [0,1] as a spread (see [Bro1975],
[vDal2003]). The basic idea is to consider the graph of such functions, one
then sees that this graph is a compact subspace of the real plane which is
homeomorphic to the line segment [0,1]. For a uniformly continuous real-
valued ƒ on [0,1], the graph Gƒ can thus be built as a line segment in the
, y-plane twisting from the vertical line  = 0 to the vertical line  = 1
without ‘doubling back’ in the horizontal sense. We can approximate the
graph Gƒ with step-by-step growing precision, by forming at stage n a ‘tape’
T ƒ
n

of rectangles, each with height 2−n, which encloses Gƒ and which runs
from the line  = 0 to the line  = 1. The rectangles all have equal width
2−m where m is determined by the uniform-continuity modulus of ƒ . And we
specify that the corner-coordinates of these rectangles are taken from the set
{(, b) |[2n+1 ·∈N∧2m+1 ·b∈N]}. We can do this in such a way that each
rectangle of T ƒn+1 lies completely within a rectangle of T ƒ

n
, for each n∈N .

We turn to the whole space Cnif([0,1],R)nt, which we wish to represent as a
spraid. Abstracting from the specified ƒ above, the properties of these ‘tapes’
(T ƒ

n
)n∈N can now be formulated in such a way that we can take the countable

collection of all such tapes as the set of basic dots of our desired spraid. Then
the definition of the refinement relation and the apartness relation is a direct
consequence of our plan thus far. If we stick to this plan, the resulting points
will be seen to represent elements of Cnif([0,1],R)nt, and vice versa, each
element of Cnif([0,1],R)nt will correspond to a point in this spraid.

This indicates how to build Cnif([0,1],R)nt as a spraid. We do not go into
this further here, but leave this as a challenge to the reader.
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A.2.5 A counterexample in CLASS illustrating AC11 We elaborate on our re-
marks in 1.2.2, by giving an example in CLASS of a natural space (V ,T# )
where for all ∈V there is a y≡ in V such that [[yn]] is open for all n∈N, and
yet (V ,T# ) is not a basic neighborhood space.
For this, we use the ‘open’ refinement relation �◦R, and we turn again to [0,1]
and [0,1]bin (see defs. 1.0.8 and 1.3.1). For each ∈[0,1]R we introduce a
copy ∗ which we call starred and we put:

V =
D
{ [12 −2

−n−2, 12 +2
−n−2] |n∈N}∪[0,1]R,bin ∪{[p, q]∗ |[p, q]∈[0,1]R |p≥

1
2

∨q≤ 1
2}.

For starred ∗∈V, where ∈[0,1]R , put  (∗)=. And for unstarred c∈V put
 (c)=c. For c∈V put c�[0,1]=©V . Then for c, d∈V, d 6=[0,1] we put c�d
iff (c is starred↔ d is starred) ∧  (c)�◦R  (d). Finally put c#d iff  (c)#R  (d).
Now let (V ,T# ) be the natural space derived from (V, #, � ). We identify the
elements of V with the real numbers that they obviously represent.

claim (in CLASS) For all ∈V there is V 3y≡ where [[yn]] is open for all n∈N.

proof If # 1
2 , then we can trivially find y≡ in V such that yn is starred

and moreover [[yn]] is open for all n∈N (by our remarks on �◦R, in 1.0.8). If
≡ 1

2 , then take y given by yn=[
1
2 −2

−n−2, 12 +2
−n−2] for n∈N , and so we

are done. (end of claim-proof)

claim (in BISH) (V ,T# ) is not isomorphic to a basic-open space.

proof Let (W ,T#2 ) be a basic-open space such that (V ,T# ) is isomorphic to
(W ,T#2 ) under isomorphism ƒ with inverse g. Put h=g◦ ƒ , then h is an identi-
cal automorphism on (V ,T# ) where for all ∈V in addition h()n=h((n)) is
a basic neighborhood of h() for all n∈N (w.l.o.g. h is a o -morphism). Con-
sider the point ≡ 1

2 given by n=[
1
2 −2

−n−2, 12]
∗ for n∈N. By the above and

since h()≡ 1
2 is a point, there must be n∈N such that h()n is of the form

[12 −2
−m−2, 12 +2

−m−2] for some m∈N. Now look at the point y≡ 1
2 −2

−n−2

in V given by y(n)=(n) and yn+s=[
1
2 −2

−n−2, 12 −2
−n−2+2−n−2−s]∗, for all

s∈N. Since y(n)=(n), we have h(y)n=[
1
2 −2

−m−2, 12 +2
−m−2]. Now the

only way to � -refine h(y)n to a point equivalent to y is by using basic dots
in [0,1]R,bin . But these dots do not form a neighborhood of y, contradiction.
(end of claim-proof)

Thus our example (V ,T# ) is not a basic neighborhood space, and yet in
CLASS: for all ∈V there is a y≡ in V such that [[yn]] is open for all n∈N.
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REMARK: The ‘reason’ that (V ,T# ) is not a basic neighborhood space lies in
the fact that in the statement: ‘∀∈V ∃y≡∀n∈N [[[yn]]∈T# ]’ the informa-
tion is not given ‘continuously’, that is by a morphism. In fact one can ques-
tion the statement precisely on this account, since by taking a z resembling
the  in the claim-proof above, we see that we have no method to assign to
z an appropriate y unless we already know in advance the infinite behaviour
of z (of which in general we are ignorant).

This is precisely the gist of the intuitionistic axiom AC11 which states that if
we really know ∀∃y [P(, y)], then this information must be given continu-
ously (by a morphism), otherwise we will always have sequences  for which
we have no method to produce y with P(, y). (END OF REMARK)
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A.3 PROOFS AND ADDITIONAL DEFINITIONS

A.3.0 Proof of theorem 1.0.8

THEOREM: (repeated from 1.0.8) (Rnt,T#R ) is a natural space which is home-
omorphic to the topological space of the real numbers R equipped with the
usual metric topology.

PROOF: We are a bit free here, since for a classical theorist we should first
move to the quotient space of equivalence classes. We consider this a cum-
bersome practice, and prefer to give a ‘direct’ proof. In this proof we consider
R to be given as the collection of all Cauchy-sequences in (Q, dR).

To any =([n, bn])n∈N∈Rnt we assign the Cauchy-sequence ƒ ()=(n)n∈N
in R. We leave it to the reader to verify that (i) for any y∈R there is a z∈Rnt
with ƒ (z)=y, (ii) for all , y∈Rnt we have #Ry iff d(ƒ (), ƒ (y))> 0. Therefore
ƒ is surjective and injective.

It is easy to see that ƒ is continuous, so to see that ƒ is a homeomorphism we
must show that ƒ is open. For this let U⊆Rnt be #-open. We must show that
ƒ (U) is open in (R, dR). For this let z∈ ƒ (U), determine =([n, bn])n∈N∈U
such that ƒ ()=z. It is not hard to construct a y=([cn, dn])n∈N∈Rnt such that
y≡R and for all n∈N : cn+1−cn > 1

4 · (dn−cn) and dn−dn+1 > 1
4 · (dn−cn).

Since U is open and y≡R∈U, we can find n∈N such that [[cn, dn]]⊆U. So
ƒ (U) contains the interval [cn, dn], and also z= ƒ ()≡ ƒ (y)∈[cn+1, dn+1]. From
this we conclude that ƒ (U) contains the metric ball B(z, 14 · (dn−cn)), showing
that ƒ (U) is open. (END OF PROOF)

A.3.1 Proof of theorem 1.2.2
For this proof we use theory from later sections. Especially simplifying is
theorem 2.2.0 which states that every natural space is spreadlike, and even
isomorphic to a spread whose tree is (N∗, �ω). The corollary from its proof
in A.3.4 shows that a basic-open space is isomorphic to a basic-open spread
whose tree is (N∗, �ω). We also use the terminology of later chapters, no-
tably chapter three.

DEFINITION: Let (V ,T# ) be a spread derived from (V, #, � ), and let B be a bar
on V (see def. 3.1.0). Then we say that B is a thin bar on V iff for all ∈B and
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b≺ we have that b 6∈B. (Then for a successor point ∈V there is a unique
n∈N with n∈B, see A.3.17 (a)). (END OF DEFINITION)

THEOREM: (in CLASS, INT and RUSS, repeated from 1.2.2):
Let ƒ be a continuous function from a natural space (V ,T#1 ) to a basic neigh-
borhood space (W ,T#2 ). Then there is a natural morphism g from (V ,T#1 ) to
(W ,T#2 ) such that for all  in V: ƒ ()≡2g().

PROOF: We give a unified proof for CLASS, INT and RUSS derived from the
common Lindelöf axiom BDD∗ defined in A.4.12, which states that every
bar on N (or equivalently N∗) descends from a thin decidable bar.

By theorem 2.2.0 and its corollary (proved in A.3.4) it suffices to prove the
theorem for the case where (V ,T#1 ) is a spread derived from (N∗, #1 , �ω)
and (W ,T#2 ) is a basic-open spread derived from (N∗, #2 , �ω). So in the
following keep in mind that [[b]] is #2-open for every b∈W= N∗.

We will inductively define a sequence of thin bars (Cn)n∈N on V= N∗ and
simultaneously construct the desired morphism g, as follows. First let n=0,
put C0={©V} and put g(©V )=©W . Let c∈C0, then since ƒ is a continuous
function, for all ∈ [c]=V there are s∈N with s≺c and b∈∝(g(c))=∝(©W )
such that ƒ ([s])⊆ [[b]].

Therefore the set B1={∈N∗ | ∃c∈C0[≺c∧ ∃b∈∝(g(c))[ƒ ([])⊆ [[b]]]} is
a bar on V= N∗. By BDD∗ we find a decidable thin bar C1 on V= N∗ from
which B1 descends. Then for all ∈C1 we have: ∃b∈∝(g(©V ))[ƒ ([])⊆ [[b]]].

Using countable choice (AC00) we can now assign to each ∈C1 a value g()
in ∝(g(©V )) = ∝(©W ) such that ƒ ([])⊆ [[g()]]. Also, to each b∈V for which
there is d≺b≺c with d∈C1, c∈C0 we assign: g(b)=g(c)=©W .

We can repeat this process for n=1 and C1. For let c∈C1, then since ƒ is
continuous, for all ∈ [c] there are s∈N with s≺c and b∈∝(g(c)) such that
ƒ ([s])⊆ [[b]].

Therefore the set B2={∈N∗ | ∃c∈C1[≺c∧ ∃b∈∝(g(c))[ƒ ([])⊆ [[b]]]} is a
bar on V= N∗. By BDD∗ we find a decidable thin bar C2 on V from which B2
descends. Then for all ∈C2 we have: ∃c∈C1∃b∈∝(g(c))[ƒ ([])⊆ [[b]]]

Using countable choice (AC00) we can now assign to each ∈C2 a value
g() in ∝(g(c)) (where c∈C1 is such that ≺c) such that ƒ ([]⊆ [[g()]].
Also, to each b∈V for which there is d≺b≺c′ with d∈C2, c′∈C1 we assign:
g(b)=g(c′).
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We can repeat this process for n=2 and C2, etc. In this way, by using depen-
dent countable choice (DC1) we can construct (Cn)n∈N and simultaneously
define g on all of V=N∗. It is easy to see that g()≡2 ƒ () for all ∈V, which
by continuity of ƒ shows that g is a morphism. (END OF PROOF)

A.3.2 Proof of theorem 1.2.3

THEOREM: (repeated from 1.2.3) Every complete separable metric space
(X, d) is homeomorphic to a basic-open space (V ,T# ).

PROOF: The rough idea is simple: for a separable metric space (X, d) with
dense subset (n)n∈N, let for each n, s∈N a basic dot be the open sphere
B(n,2−s) = {∈X |d(, n)< 2−s}. Then we can take as set of dots V =
{B(n,2−s) |n, s∈N}∪{©V}. The technical trouble now is to define # and
� constructively, since in general even for s > t the containment relation
B(n,2−s)⊆B(m,2−t) is not decidable. However, this containment relation
has an enumerable subrelation which also does the trick. This because for
all (n, s) and (m, t) with s > t there is ∈{0,1} such that:

(=0∧d(n, m)< 2−t−2−s) or (=1∧d(n, m)> 2−t−2−s−2−2s)

Using AC00 (countable choice) we can define a function h fulfilling the above
statement. Now we put B(n,2−s)≺B(m,2−t) iff h((n, s), (m, t))=0. Like-
wise we define #, since for all (n, s) and (m, t) there is j∈{0,1} such that:

( j=0∧d(n, m)< 2−s+2−t+2−s−t) or ( j=1∧d(n, m)> 2−s+2−t+2−s−t−1)

Using AC00 we can define a function g fulfilling the above statement. Now
we simply put B(n,2−s)#B(m,2−t) iff g((n, s), (m, t))=1.
It is not difficult to see that (V, #, � ) generates a basic-open natural space
which is homeomorphic to (X, d). (END OF PROOF)

REMARK: Notice that by our definition of #, if B(n,2−s)#B(m,2−t), then
d(n, m)> 2−s+2−t+2−s−t−1). This is an important detail for proving theo-
rem 3.4.3. (END OF REMARK)

COROLLARY: In CLASS, INT and RUSS the following holds:

(i) A continuous function ƒ from a natural space (W ,T# ) to a complete
metric space (X, d) can be represented by a morphism from (W ,T# ) to a
basic neighborhood space (V ,T# ) homeomorphic to (X, d), by theorem
1.2.2.
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(ii) A representation of a complete metric space as a basic neighborhood
space is unique up to isomorphism.

In BISH the following holds:

(iii) If (X, d) and (V ,T# ) are as above in the theorem, then we can define a
metric d′ on (V ,T# ) (see def. 4.0.0) by defining d′(, y)=d(h(), h(y))
for , y∈V and h a homeomorphism from (V ,T# ) to (X, d). This metric
can be obtained as a morphism from (V×V ,T# ) to Rnt by the construc-
tion of (V ,T# ). We then see that the apartness topology and the metric
d′-topology coincide, in other words (V ,T# ) is metrizable. We conclude:
on (this natural representation of) a complete metric space, the metric
topology coincides with the apartness topology.

A.3.3 Proof of theorem 1.4.0

THEOREM: (repeated from 1.4.0) Rbin (as well as Rter , Rdec ) is a pathwisent

connected space which is not arcwisent connected.

PROOF: A detailed constructive proof for Rter is given in [Waa1996], this
construction can be literally transposed to our setting to show that Rter is
pathwisent connected. That Rter is not arcwisent connected follows from our
work in example A.2.2. We sketch an alternative proof using the Cantor func-
tion (see example A.2.2 and paragraph 1.3.2).

Suppose <Ry∈[0,1]bin, we want to show that there is a morphism ƒ from
[0,1] to [0,1]bin such that ƒ (0)≡R and ƒ (1)≡Ry. It is not so difficult to see
that [0,1]bin is isomorphic to {z∈[0,1]bin |≤Rz≤Ry} under an isomorphism
g with g(0)≡ and g(1)≡y. This means that we can take ƒ =

D
g◦ ƒCn. For

y <R we can mirror this argument.

Now if , y∈[0,1]bin such that at stage n we still cannot determine #Ry,
then we can still start constructing ƒ , sending initial values of 0∈[0,1] to
initial values of  and intial values of 1∈[0,1] to initial values of y, in such a
way that if at any later stage m we see (m)#Ry(m), then we can continue
as above in the case where <Ry or y <R.

Of course, to complete the proof one must show that ƒCn can indeed be given
as a o -morphism from [0,1] to [0,1]bin (we left this as a non-trivial exercise
in example A.2.2). One also needs to extend the proof for [0,1]bin to all of
Rbin , which involves some extra work since Rbin is not closed under addition
and multiplication. Finally, one can use the exercise that all the n-ary reals
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are isomorphic to transfer the pathwisent connectedness of Rbin to all the
n-ary reals. (END OF PROOF)

A.3.4 Proof of theorem 2.2.0 We need a preparatory definition.

DEFINITION: Let (V ,T# ) be a natural space derived from (V, #, � ). We intro-
duce a formal element ⊗ not contained in V, and put ⊗# for all ©V 6=∈V,
and ¬ (⊗#⊗). Also put V⊗=V∪{⊗}. Then the set #V⊗ ={(c, d)∈V⊗×V⊗ |c#d}
is countable.12

We say that e : N→ #V⊗ is a pregrade on V iff e is an enumeration of either
#V⊗ or of #V ={(c, d)∈V×V |c#d}

13. Let e be a pregrade on V, then for
n∈N and a basic dot  we say that  chooses on en=(c, d) iff #c and/or
#d. We now define a decidable gradation on basic dots as follows: for
every n∈N a basic dot  is of e-grade n (notation gde()≥ n) iff  chooses
on e for every  < n.

In addition, let  : N → V be an injective enumeration of V. For each n∈N
we define the decidable set B,en ={m∈V |m≥ n∧gde(m)≥ n}.
Finally, for n∈N a basic dot  is of (, e)-grade n iff  is in B,en and not
in B,en+1. This is also decidable, so every basic dot has a unique decidable
(, e)-grade. Notice that B,e0 =V, and ©V 6∈B

,e
1 . (END OF DEFINITION)

LEMMA: Let (V ,T# ) be a natural space derived from (V, #, � ). Let  : N→ V

be an injective enumeration of V, and let e : N → #V⊗ be a pregrade on V.
Then a sequence =0�1�2 . . . of basic dots in V forms a point in V iff
for every n∈N , there is an m∈N such that m∈B,en .

PROOF: The proof is a simple checking of the definitions, which we leave to
the reader as an exercise. (END OF PROOF)

We are now ready to prove the main theorem:

THEOREM: (repeated from 2.2.0) Every natural space is spreadlike. In fact,
every natural space (V ,T# ) is isomorphic to a spread (W ,T# ) whose tree is
(N∗, �ω).

12This is the reason for introducing ⊗, since for a space containing just one point up to
equivalence, #V is empty, and there are many spaces of which we don’t know whether they
contain more than one point.

13This last addition is to avoid cumbersome notation if we have a space containing at least
two points.
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PROOF: Let (V ,T# ) be a natural space derived from (V, #, � ). Let  : N→ V

be an injective enumeration of V, and let e : N → #V⊗ be a pregrade on V.
For d∈V we put {d}� ={c∈V |c�d}.

We inductively define a sequence of functions (hn)n∈N from nN∗ = {∈N∗ |
lg()=n} to B,en such that for b in n+1N∗ and  in nN∗: if b∈∝() then
hn+1(b)≺hn(). In addition, the functions (hn)n∈N will be ‘surjective enough’,
meaning that every point in V will be represented in the end, when we join
all the hn’s to a single morphism h from Baire space to (V ,T# ).

First, let h0 be the function from {©ω} to B,e0 given by h0(©ω)=©V .

We turn to n=1. We can determine a bijection g©
ω
=h1 from ∝ (©ω)=1N∗

to B,e1 . Trivially for b in 1N∗ and  in 0N∗={©ω} we have: if b∈∝() then
h1(b)≺h0().

Next we turn to n=2. For ∈1N∗ we look at h1()∈V. Remember that
{h1()}≺ = {b∈V |b≺h1()}. We hold: B =

D
B,e2 ∩{h1()}≺ is a countable

set (since it is infinite, and all the relevant relations are decidable). Therefore
we can determine a bijection g from ∝() to B. This means that we can
take h2=
⋃

∈1N∗g, and see that for b in 2N∗ and  in 1N∗ we have: if
b∈∝() then h2(b)≺h1().

Now we are in business, since for n=3 and so on the above process can be
continued verbatim, changing only the index n. This yields two sequences
of functions, which arise intertwinedly. The first sequence is (hn)n∈N from
nN∗={∈N∗ | lg()=n} to B,en such that for b in n+1N∗ and  in nN∗: if
b∈∝() then hn+1(b)≺hn(). The second sequence is (g)∈N∗ , where for
∈nN∗, g is a bijection from ∝() to B=B

,e
n+1 ∩{hn()}≺ .

(We do not really use DC1 since all these functions can be found canonically
once we have fixed our enumerations  and e).

claim If for ∈nN∗ we put h()=hn(), then h is a surjective morphism
from Baire space N to (V ,T# ). If we introduce an apartness #W on N∗

by putting #Wb iff h()#Vh(b), then h is an injective morphism from the
spread (W ,T# ) derived from (N∗, #W , �ω) to (V ,T# ).

proof By the above lemma, h is surjective since g is a bijection from ∝() to
B for ∈N∗. Now (W ,T# ) is a spread, since for ∈nN∗ we have h()∈B,en ,
so infinite ≺ω-trails define points. (end of claim-proof)

To complete the proof, we need to show that h is an isomorphism from
(W ,T# ) to (V ,T# ). Therefore we need to construct an inverse hinv for h.
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In general this inverse hinv can only be constructed as a trail morphism
(see def. 1.1.4), in other words a refinement morphism on the trail space
of (V ,T# ). So we turn to the trail space (V o,T#

o), derived from (V o, #∗, �∗).
We also use the above definition and lemma, and the sequences of functions
(hn)n∈N and (g)©6=∈N∗ above.

To start put hinv(©∗)=©ω . Next, let =0, . . . , n be in V o (so 0 � . . . � n).
We associate to  a unique ‘minimal grade sequence’ p=p0, . . . , pj−1 with
j≤ n+1, where p is a subsequence of . First we take 0=μk ≤ n[k ∈B,e1 ]
if such k exists. If such k does not exist, we are done and the minimal grade
sequence associated to  is the empty sequence and j=0. Next, if j 6=0 we
take 1=μk ≤ n[k > 0∧k ∈B,e2 ] if such k exists (else j=1 and we are done).
And generally let s=μk ≤ n[k > s−1∧k ∈B,es+1], until we have exhausted .
Then p=p0, . . . , pj−1=0 , . . . , j−1 .

To define hinv() we use the minimal grade sequence p0, . . . , pj−1. If j=0 then
we put hinv()=©ω . Else, we can first turn to p0. Since h1 is a bijection, we
can determine b0=h−11 (p0)∈

1N∗. If j=1 we are done, else we know that gb0
is a bijection from ∝(b0) to Bp0=B

,e
2 ∩{p0}≺ . Then we can put b1=g−1b0 (p1).

In this way we can continue, putting bs+1=g−1bs (ps+1) for all s < j−1. Finally
we put hinv()=b0, . . . , bj−1. Since  is arbitrary, this suffices to define hinv

on V o, and also on (V ,T# ) by putting hinv()=hinv((0)), hinv((1)), . . . for
∈V.

claim hinv is a trail morphism from (V ,T# ) to (W ,T# ) such that hinv◦h()≡
for all ∈W and h ◦ hinv(y)≡y for all y∈V.

proof The only real concern for showing that hinv is actually a o -morphism
with the correct properties, is that hinv sends points in V to points in W.
So let ∈V, we need to show that hinv() is in W. Let n∈N, n≥ 1 be arbi-
trary. By the above lemma, we know that there is m0∈N such that m0 ∈B

,e
1 ,

then m1∈N,m1 >m0 with m0 � m1 ∈B
,e
2 , etc., until we find mn−1 >mn−2

with mn−2 � mn−1 ∈B
,e
n . Then the minimal grade sequence associated to

(mn−1+1) has at least length n. Therefore hinv((mn−1+1)) is a sequence
of length at least n. Thus we see that hinv() is an infinite sequence of ever-
shrinking basic dots of Baire space, and so a point in Baire space.

To show that hinv() is also a point in W, consider , c∈N∗ with #Wc. This
by definition of #W means that h()#Vh(c). Therefore h()#Vh(c) is one of
the e-enumerated pairs of apart dots, say that (h(), h(c))=eM. By the above
reasoning which demonstrated that hinv() is a point of Baire space, we know
that there is an m∈N such that the minimal grade sequence p0, . . . , pj−1 as-
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sociated to (m) has length j=M+1. By carefully looking at the construction
of hinv we see that hinv((m)) is a sequence b0, . . . , bM where bM∈B,eM+1 and
so a fortiori bM#W and/or bM#Wc.

Therefore hinv() is also a point in W. We leave it to the reader to verify that
hinv ◦ h()≡ for all ∈W and h ◦ hinv(y)≡y for all y∈V. (end of claim-proof)
(END OF PROOF)

COROLLARY:

(i) Let (V ,T# ) be a natural space, then there is a surjective � -morphism
from Baire space to (V ,T# ). (‘Baire space is a universal spread’, ‘every
natural space is the natural image of Baire space’, ‘every natural space
is a quotient topology of Baire space’).

(ii) If (V ,T# ) is a basic-open space (see definition 1.2.2) then (V ,T# ) is
isomorphic to a basic-open spread (W ,T# ) whose tree is (N∗, �ω).

A.3.5 Proof of theorem 2.2.1
That Cantor space is a universal fan is an easy and -in different terminology-
well-known result, but we prove it anyway.

THEOREM: (repeated from 2.2.1) Let (V ,T# ) be a fann, then there is a sur-
jective morphism from Cantor space to (V ,T# ).

PROOF: For each ∈V we need to fix an element ∈V , �. For this we
use a bijection  : N → V with inverse −1. Now for  in V, let  be the
unique point in V such that 0= and for each n∈N we have: −1(

n+1) =
μs∈N[(s)≺

n
]. 14

We define the surjective morphism ƒ inductively. Determine the finite subset
∝(©V )={ | ≤m}⊂V (in some enumeration, for some m∈N). Let n∈N be
such that 2n <m≤ 2n+1. Putting n+1{0,1}∗={b∈{0,1}∗ | lg(b)=n+1}, we
see that n+1{0,1}∗ contains sufficient elements b (numbered in the obvious
lexicographical/binary way) to put ƒ (b) =  for all ≤m. For m< ≤ 2n+1, we
fix ƒ by sending all of {y∈C |y�b} to the fixed 0 ∈V , 0�0.

Now notice that V again determines a fann for all ≤m, and so we can
repeat this process for V and {y∈C |y�b} which is isomorphic to C. This
inductively defines ƒ . We leave it to the reader to verify that ƒ is the desired
surjective morphism. (END OF PROOF)

14This construction also works for spraids, not just for fanns.
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A.3.6 Proof of theorem 3.1.0 We prove that for spraids the formal inductive
covering relation Ê equals the genetic inductive covering relation Ê∝ .

THEOREM: (from 3.1.0) Let (V ,T# ) be a spraid derived from (V, #, � ), and
let E, F⊆V. Then FÊ E iff FÊ∝ E.

PROOF: We necessarily use both PFI and PGI∗. First let FÊ∝ E, which means
by definition that {}Ê∝ E for all ∈F. Let ∈F, then {}Ê∝ E which means
E descends from a genetic bar G on V. We now show by genetic induction
on G that {}Ê E.

G© If G={©}={}, then ∈E� , so by Ind1
Ê and Ind3

Ê we see that {}Ê E.

G∝ Let G=
⋃

b∈∝()Bb where for all b∈∝() we have that Bb is a genetic
bar on Bb such that if E descends from Bb, then {b}Ê E. However,
we do indeed know that E descends from Bb for all b∈∝() by the
assumption on G. Therefore we find: {b}Ê E for all b∈∝(). This
means that ∝()Ê E by Ind2

Ê. On the other hand, one sees by Ind1
Ê

and Ind2
Ê that {c |c≺}Ê ∝(). Combining this with Ind5

Ê we obtain
{}Ê {c |c≺}Ê ∝()Ê E, and so by Ind4

Ê, we see that {}Ê E.

Since  is arbitrary, this means that by Ind2
Ê we can conclude FÊ E.

Now for the implication in the other direction, let P(F, E) be the property:
FÊ∝ E. We prove that P satisfies Ind1 through Ind5 (for subsets F, E,D of V):

Ind1 if b�c in V, then {b}Ê∝ {c} since {c} descends from the genetic bar
{©b} on Vb.

Ind2 if for all ∈F we have {}Ê∝ E, then by definition of Ê∝ , we have FÊ∝ E.

Ind3 if FÊ∝ D and D⊆E, this trivially implies that FÊ∝ E.

Ind4 suppose FÊ∝ DÊ∝ E. Let  in F, then {}Ê∝ DÊ∝ E. We must show that
{}Ê∝ E. Let G be a genetic bar on V such that D descends from G. To
show that {}Ê∝ E we use genetic induction and propositions 3.3.1 and
A.3.8 to prove the statement: ‘Let B be a genetic bar on V such that D
descends from B, then {}Ê∝ E’.

G© If B={©}={}, then since D descends from B there is a d∈D
with �d. Since {d}Ê∝ E we find a genetic bar H on Vd such that E
descends from H. Now by proposition 3.3.1, the reduction H↑ of H
to V contains a genetic bar H′ on V. Clearly E descends from H′

as well, showing that {}Ê∝ E.
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G∝ Let B=
⋃

b∈∝()Bb where for each b∈∝() we have that Bb is a ge-
netic bar on Vb satisfying: if D descends from Bb then {b}Ê∝ E.
Still, we already know that D descends from Bb for each b∈∝().
Therefore for each b∈∝() we know {b}Ê∝ E. This means that for
each b∈∝() we have a genetic bar Hb on Vb such that E descends
from Hb. Now by proposition A.3.8 we see that H=

⋃

b∈∝()Hb is
a genetic bar on V such that E descends from H, showing that
{}Ê∝ E.

By PGI∗ our statement is proven, and we conclude (since G is a genetic
bar on V such that D descends from G) that {}Ê∝ E. Since ∈F is
arbitrary, this shows that FÊ∝ E.

Ind5 bÊ∝ {d |d≺b}, since {d |d≺b} contains the genetic bar ∝(b) on Vb.

By PFI we now conclude that FÊ E implies FÊ∝ E. (END OF PROOF)

A.3.7 Proof of proposition 3.3.0
We wish to show that for a spraid (V ,T# ) derived from (V, #, � ), genetic bars
on V correspond to genetic bars on V ∝ in a precise way. We could call this
the unglueing of genetic bars on V. From this correspondence it follows that
trail morphisms are inductive iff they are inductive as refinement morphism.

LEMMA: Let (V ,T# ) be a spraid derived from (V, #, � ). Let c∈V, d∈V ∝ and
let G⊆V be a genetic bar on Vc and H a genetic bar on V ∝

d
. Then:

(i) id∗(H) is a genetic bar on Vid∗(d).

(ii) for all c′∈V ∝ with id∗(c′)=c there is a genetic bar G′ on V ∝

c′
such that

id∗(G′)=G.

COROLLARY: There is a direct correspondence between genetic bars on V and
genetic bars on V ∝.

PROOF: Ad (i): by genetic induction:

G© If H={©d}={d}, then id∗(H)={id∗(d)}={©id∗(d)}, and we are done.

G∝ Let H=
⋃

b∈∝(d)Bb where for each b∈∝(d) we know that id∗(Bb) is a
genetic bar on Vid∗(b). Notice that id∗(∝(d))=∝(id∗(d)) in a trivial bi-
jective correspondence. Put b′= id∗(b) for b∈∝(d) and B′

b′
= id∗(Bb),

then id∗(H)=
⋃

b′∈∝(id∗(d))B
′
b′

. This shows id∗(H) is a genetic bar on
Vid∗(d), and we are done.
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Ad (ii): also by genetic induction. Take any c′∈V ∝ such that id∗(c′)=c. We
again use the bijective correspondence between ∝(c′)⊂V ∝ and ∝(c)⊂V, but
now for b∈∝(c)⊂V we let b′∈∝(c′)⊂V ∝ be such that id∗(b′)=b.

G© If G={©c}, then take G′={©c′}.

G∝ Let G=
⋃

b∈∝(c)Bb where for each b∈∝(c) we have a genetic bar B′
b′

on V ∝

b′
such that id∗(B′b′) is Bb. Now take G′=

⋃

b′∈∝(c′)B′b′ , and we are
done.

(END OF PROOF)

PROPOSITION: (from 3.3.0) Let g be a o -morphism from (V ,T# ) to (W ,T#2 ).
Then g is an inductive o -morphism iff g is inductive as a � -morphism from
(V ∝,T#

o) to (W ,T#2 ).

PROOF: With the above lemma, the proof now is trivial. (END OF PROOF)

A.3.8 Proof of lemma 3.3.2 The proof of lemma 3.3.2 is quite involved. We
even need an extra proposition, which has intrinsic value since it can be put
to use often in genetic induction proofs:

PROPOSITION: Let (V ,T# ) be a spraid derived from the pre-natural space
(V, #, � ). Let ∈V and suppose G is a genetic bar on V where for all e∈G
we have a genetic bar De on Ve. Then D=

⋃

e∈GDe is a genetic bar on V.

PROOF: By genetic induction on G:

G© If G={©}={} then we are trivially done.

G∝ Let G=
⋃

b∈∝()Bb where for all b∈∝(): if for all e∈Bb there is a genetic
bar De on Ve, then Db=

⋃

e∈BbDe is a genetic bar on Vb. However, we
already know for all b∈∝() that for all e∈Bb there is a genetic bar De

on Ve and so Db is a genetic bar on Vb. Therefore D=
⋃

b∈∝()Db is a
genetic bar on V.

(END OF PROOF)

LEMMA: (repeated from 3.3.2) Let ƒ be an inductive morphism between the
two spraids (V ,T#1 ) and (W ,T#2 ), derived from (V, #1 , �1) and (W, #2 , �2)
respectively. Let ∈W, and let G be a genetic bar on W. Then for all d∈V:
if ƒ (d)∈W, then ƒ

←
(G) contains a genetic bar on Vd.
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PROOF: By genetic induction on the bar G on W.

G© G={©}={}. Let d∈V with ƒ (d)∈W. Then d∈ ƒ
←
()= ƒ

←
(G) so {©d}

is a genetic bar on Vd contained in ƒ
←
(G).

G∝ G=
⋃

b∈∝()Bb and for all b∈∝() we know that for all d∈V: if ƒ (d)∈Wb,
then ƒ

←
(Bb) contains a genetic bar on Vd (the induction property).

Now let d∈V with ƒ (d)∈W. If ƒ (d)≺, then there is b∈∝() with
ƒ (d)∈Wb which by the induction premise implies that there is a genetic
bar on Vd which is contained in ƒ

←
(Bb)⊆ ƒ

←
(G) and we are done.

Else, ƒ (d)=. Then we consider the genetic bar H=∝() on W. By
proposition 3.3.1 the expansion H↓© of H to W is a genetic bar on W, so
ƒ
←
(H↓©) contains a genetic bar E on V. Again by proposition 3.3.1, the

reduction E↑d of E to Vd contains a genetic bar D on Vd.

By construction of E, we see that for e∈D there is a b∈∝() such that
ƒ (e)∈Wb. Therefore by the induction assumption, ƒ

←
(Bb) contains a ge-

netic bar Ke on Ve. Now by the proposition above, K=
⋃

e∈DKe is a
genetic bar on Vd contained in ƒ

←
(G).

(END OF PROOF)

A.3.9 Proof of proposition and lemma 3.3.3
In formal topology (see [Pal2005]) a continuousBIS function from R to R is rep-
resentable by a formal mapping from the formal reals to the formal reals, and
vice versa each such mapping represents a continuousBIS function. We repeat
this insight in our setting (recall for the proof that sσR

∝={∈σR ∝ | lg()=s}):

PROPOSITION: Let ƒ be a continuousBIS function from R to R. Then there is
an inductive morphism ƒ∗ from σR to σR such that for all ∈σR we have
ƒ ()≡ ƒ∗() (where we identify R and σR for convenience). Conversely, if g
is an inductive morphism from σR to σR, then as a function g is uniformly
continuous on each compact subspace of R.

PROOF: We first create ƒ∗ as a trail morphism, since then we need to keep
only little track of the intersection properties of intervals. Therefore we use
the unglueing σR

∝ of σR, which was defined in 2.2.0.

We turn to the uniform-continuity properties of ƒ on compact subsets of R.
We divide R in the pairwise overlapping compact spaces ([m,m+2])m∈Z, and
by the uniform-continuity properties of ƒ (using AC00) we can determine a
sequence (δ(m,n))m∈Z,n∈N of elements of N (with δ(m,n)< δ(m,n+1)) such
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that if =[ k
2δ(m,n) ,

k+2
2δ(m,n) ] is a subinterval of [m,m+2], then ƒ ()⊂[ s

2n ,
s+2
2n ]

for some s∈Z.

Again using AC00, we can turn this into a function ƒ̃ on all pairs (m,) where
=[ k

2δ(m,n) ,
k+2
2δ(m,n) ] is a subinterval of [m,m + 2]. We hereby define ƒ̃ in such

a way that ƒ̃ ((m,))=[ s
2n ,

s+2
2n ] for some s∈Z and ƒ ()⊂ ƒ̃ ((m,)) for all such

pairs (m,).

This will yield the definition of the desired morphism ƒ∗ on basic dots , by
induction on t= lg(). For t=0 put ƒ∗(©∗) =

D
©
R. Next, suppose ƒ∗ has been

defined on sσR

∝ for s < t > 0, and let =0, . . . , t−1∈ tσR ∝. Determine m∈Z
with 0=[m,m+ 2] and the smallest n∈N such that t= lg()< δ(m,n)+1.

If n=0, this means that for any c �∗ t−1, in the process of defining ƒ̃ we did
not assign to (m,c) an interval b such that ƒ (c)⊂b, because even t−1 is still
too large. Therefore we put ƒ∗() =

D
©
R.

If on the other hand n> 0, then t−1≥ δ(m,n−1). Putting s=δ(m,n−1), we
define: ƒ∗() =

D
ƒ̃ (m,s)∩ ƒ∗(0, . . . , s−1), interpreted as intervals.

We leave it to the reader to verify that ƒ∗ is a � -morphism from σR

∝ to σR
(and therefore a o -morphism from σR to itself) which represents ƒ .

To finish the proof of the first part of the theorem, we need to show that ƒ∗

is an inductive morphism. For this, let G be a genetic bar on σR. We need to
show that ƒ∗

←−
(G) contains a genetic bar on σR

∝. If G={©R} then we are triv-
ially done. Else consider ƒ∗

←−
(G) on the subfan ρ∗[m,m+2]={∈σR

∝ |�∗[m,m+
2]} for given m∈N. By the uniform continuity of ƒ , we find N∈N such that
ƒ ([m,m+2])⊂[−N+1, N−1]. Also, [−N,N] determines a subfann τ=τ[−N,N]
of σR, and we know that Gτ=G∩ τ is finite by theorem 3.2.0.

And so we find a least M∈N such that Gτ descends from {∈τ | lg()=M+1},
in other words such that the intervals of the type [ k

2M ,
k+2
2M ] form a refinement

of Gτ. Now on ρ∗[m,m+2] we see that for each element b of the genetic bar
HG,[m,m+2] = {∈ρ∗[m,m+2] | lg()=δ(m,M)+1}, there is a c∈Gτ such that
ƒ∗(b)�c. We conclude: HG,[m,m+2] is contained in ƒ∗

←−
(G). Thus we canonically

obtain a sequence of genetic bars (HG,[m,m+2])m∈Z (each on the respective
ρ∗[m,m+2]) such that HG,[m,m+2] is contained in ƒ∗

←−
(G) for each m∈Z.

It suffices to consider that by definition of genetic bars, H=
⋃

m∈ZHG,[m,m+2]

is a genetic bar on σR

∝ (trivially H is contained in ƒ∗
←−
(G)). This finishes the

proof of the first half of the theorem.

For the second half of the theorem, let g be an inductive morphism from
σR to σR. Copying from the reasoning and constructions above, we look
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at the genetic bar Gn = {∈σR | lg()=n+1}, in other words the intervals
of the form [ k2n ,

k+2
2n ]. We see that

←
g(Gn) contains a genetic bar Hn, which

is finite on each subfan of σR. This shows that for a subfan τ and any
n∈N , there is an m∈N such that for all , y∈τ with dR(, y)≤ 2

−m we have
dR(g(), g(y))≤ 2

−n. A BISH-compact subspace X is always contained in a
subfan τ of σR, so we see that g is indeed uniformly continuous on any
BISH-compact subspace of R. (END OF PROOF)

REMARK: Proposition 2.3.2 (and its proof) shows how to represent ƒ∗ as a
� -morphism from σR to σR. (END OF REMARK)

We also need to prove our remark that the situation is very different when
we replace the image space with R+.

LEMMA: The statement that every uniformly continuous function from [0,1]
to R+ is representable by an inductive morphism from σ[0,1] to σ

R+
is equiv-

alent to the fan theorem FT.

PROOF: The proof uses the equivalence of FT to the statement that each
uniformly continuous function from [0,1] to R+ is bounded away from 0,
which was already proved in [Jul&Ric1984].

First let ƒ be a uniformly continuous function from [0,1] to R+ which is
representable by an inductive morphism ƒ∗ from σ[0,1] to σ

R+
. Notice that

G=∝(©R) is a genetic bar on σ
R+

, therefore ƒ∗
←−
(G) contains a (finite) genetic

bar H on σ[0,1] . Looking at the finite set ƒ∗(H)�G we conclude that there is
n∈N such that ƒ ()> 2−n for all ∈[0,1], in other words ƒ is bounded away
from 0.

Conversely, suppose ƒ is bounded away from 0, in other words there is n∈N
such that ƒ ()> 2−n for all ∈[0,1]. By the uniform continuity of ƒ , we
can now proceed almost exactly as in the proof of the proposition above
to construct an inductive morphism ƒ∗ from σ[0,1] to σ

R+
representing ƒ . We

leave this to the reader.

To finish the proof, we now invoke the well-known result that FT is equivalent
to the statement that each uniformly continuous function from [0,1] to R+ is
bounded away from 0 (see [Jul&Ric1984], or for another elegant proof, see
proposition 4.2 in [Waa2005]). (END OF PROOF)



Proofs and additional definitions 136

A.3.10 Proof of proposition 3.4.1
For this we first need a lemma on genetic and inductive bars:

LEMMA: Let (V ,T# ) be a spraid derived from the pre-natural space (V, #, � ),
and let D0, D1 be (i) genetic (ii) inductive bars on V. Then:

(i) min(D0, D1)={d∈V | ∃c∈V ∃ ∈{0,1} [d∈D∧c∈D1−∧d�c]} is a ge-
netic bar on V.

(ii) (D0)� ∩ (D1)� is an inductive bar on V.

PROOF: For genetic bars D0, D1 we prove (i) by genetic induction on D0:

G© If D0={©}, then min(D0, D1)=D1 and we are done.

G∝ Else D0=
⋃

b∈∝(©)Bb where for all b∈∝(©) we have that min(Bb, D1) is
a genetic bar on Vb. Then min(D0, D1)=

⋃

b∈∝(©)min(Bb, D1) is also a
genetic bar.

Ad(ii): for inductive bars D0, D1 descending from genetic bars G0, G1 respec-
tively, it suffices to see that (D0)� ∩ (D1)� contains min(G0, G1), which is
a genetic bar by (i). For let d∈min(G0, G1). Without loss of generality
d∈G1 and there is d�c∈G0. Then we can determine d�b∈D1 and c�∈D0,
whence d�c� and so d∈ (D0)� ∩ (D1)� . (END OF PROOF)

COROLLARY: By induction on n we can now conclude: if B0, . . . , Bn is a finite
sequence of (i) genetic (ii) monotone inductive bars, then

(i) min(B0, . . . , Bn)={d∈V |∃ ≤ n [d∈B∧∀ j≤ n, j 6= ∃c∈Bj[d�c]} is a ge-
netic bar on V.

(ii)
⋂

≤nB is a monotone inductive bar.

REMARK: An interesting exercise for the reader is to see why for inductive bars
D0, D1 descending from genetic bars G0, G1 respectively, the barmin(D0, D1)
does not necessarily descend from min(G0, G1). For a spread (V ,T# ) how-
ever min(D0, D1) does descend from min(G0, G1). (END OF REMARK)

PROPOSITION: (repeated from 3.4.1)

(I) For a spraid (V ,T# ) with corresponding pre-natural space (V, #, � ), the
collection T#

∝ is a topology which is refined by T# .

(II) Let (V ,T# ) be an inductive spraid with corresponding pre-natural space
(V, #, � ). Then for finite subsets A#B of V, the subset C={c∈V |c#A∨
c#B} is an inductive bar on (V ,T# ).
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PROOF: Ad (I): That T# refines T#
∝ is trivial. To show that T#

∝ is a topology,
we check the definitions:

Top1 Trivially the empty set ∅ and V are in T#
∝ (for any ∈V the set BV=V

is an inductive bar).

Top2 Let U ,W ∈T#
∝ , we must show that U ∩W ∈T#

∝ . For this, let ∈ U ∩W,
and consider that BU∩W=B


U ∩B


W since for all b∈BU ∩B


W we can de-

cide: case U(1) b#lg(b) (done) or case U(2) [b]⊆ U , in which case
we consider case W(1) b#lg(b) (done) or case W(2) [b]⊆W whence
we see that [b]⊆ U ∩W and we are done too. The bars BU and BW are
monotone and inductive, and so BU∩W=B


U ∩B


W is a monotone induc-

tive bar also by (ii) of the above corollary.

Top3 Let U ⊆V be such that for all ∈ U there is a W 3 in T#
∝ such that

W⊆ U . Let ∈ U , determine W 3 in T#
∝ such that W⊆ U . Then clearly

BW⊆B

U therefore BU is an inductive bar, which since  is arbitrary

shows that U is in T#
∝ .

Ad (II): First suppose either A or B is empty, then the conclusion is triv-
ially fulfilled. Else, let A={0, . . . , n} and B={b0, . . . , bm} with #bj for
all ≤ n, j≤m. By definition of ‘inductive spraid’, for any ≤ n, j≤m the set
D,j={d∈V |d# ∨ d#bj} is an inductive bar (which is also clearly mono-
tone). Therefore by (ii) of the above corollary, D=

⋂

≤n,j≤mD,j is a monotone
inductive bar. However, D actually equals C={c∈V |c#A∨ c#B}, therefore
C is an inductive bar as promised. (END OF PROOF)

A.3.11 Proof of meta-theorem 3.4.0
In paragraph 3.4.0 we indicated pointwise problems regarding inductive mor-
phisms in BISH:

META-THEOREM: (repeated from 3.4.0)
In RUSS (and by implication BISH) we have the following problems regarding
pointwise use of inductive definitions:

P1 Uniform continuity of a function ƒ does not imply that there is an in-
ductive morphism representing ƒ . Counterexamples can be given even
for uniformly continuous functions from [0,1] to R+. In other words:
uniform continuity does not imply inductive representability.

P2 Weak completeness15 of a compact space is not preserved under induc-

15The property for a located subset A of a metric space (X, d) that for all ∈X: if # for
all ∈A, then d(,A)= inf({d(, ) |∈A})> 0.
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tivity. In RUSS, even for an inductive morphism from [0,1] to [0,1], the
image of a compact subspace may be strongly incomplete.

P3 Inductive representability is not preserved under the restriction of a
function to its pointwise image space. This follows from the counterex-
amples for P1, since every uniformly continuous function from [0,1] to
R is inductively representable by proposition 3.3.3. Therefore we can
expect problems with the reciprocal function  → 1

 , and must continu-
ally address these problems by adapting our definitions.

Therefore in BISH, the desirable properties associated with the problems
above cannot be shown to hold without further assumptions. In fact, as-
sertion of any of these properties implies the fan theorem FT.

PROOF: The proof is derived from the construction of ContraCantor space,
which is a compact subspace C[0,1] of [0,1] such that if we write C[0,1] for the
standard embedding of Cantor space in [0,1], we see: dR( C[0,1] ,C[0,1])=0 and
yet in RUSS we also have dR(,C[0,1])> 0 for ∀∈ C[0,1] . ContraCantor space
is defined in the examples’ section of the appendix A.2.3 using the Kleene
Tree, and the properties above are proved in proposition A.2.3.

To show P1, consider the uniformly continuous function dC from [0,1] to
[0, 16] given by dC()=dR(,C[0,1]).16 The restriction of dC to C[0,1] is an ex-
ample in RUSS of a uniformly continuous function (from C[0,1] to R+) which
cannot be represented as an inductive morphism from the subfann C[0,1] to
Rnt
+ . Notice that dC is a beautiful function, and that C[0,1] is a beautiful com-

pact space, so this type of problem can be expected to crop up at any time.

The above example also shows what we mean with P3, since dC seen as a
uniformly continuous funtion from C[0,1] to R is representable as an inductive
morphism from the subfann C[0,1] to Rnt (see prp. 3.3.3 and A.3.9).

To show P2, we consider the subset dC( C[0,1]) of [0, 16], which is obviously
strongly incomplete, since 0#dC( C[0,1]) and yet dR( C[0,1] ,C[0,1])=0.

Another example in RUSS of a strongly incomplete fann-image under an in-
ductive morphism was already given in [Waa2005]. This example consists
of [0,1]N

bin
and a recursive β in [0,1]N such that d

RN
(β, [0,1]N

bin
)=0) and yet

β#
RN
 for all recursive ∈[0,1]N

bin
. (END OF PROOF)

16The distance of a point to a compact subspace can always be constructively calculated.
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A.3.12 Proof of theorem 3.4.3
We prove that every complete metric space is homeomorphic to a ∝ -spread,
by adapting our proof in 1.2.3 that every complete metric space is homeo-
morphic to a natural space.

THEOREM: (from 3.4.3) Every complete metric space (X, d) is homeomorphic
to a ∝ -spraid.

PROOF: For a complete metric space (X, d) with dense subset (n)n∈N, we
constructed a homeomorphic (V, #, � ) where V = {B(n,2−s) |n, s∈N}. If
we look more carefully, we see that the trail space of this (V ,T# ) contains a
(homeomorphic) ∝ -spread.

We copy the notation in A.3.2. We defined � and # on pairs of basic dots
in V such that B(n,2−s)≺B(m,2−t) implies s > t and d(n, m)< 2−t−2−s,
and secondly B(n,2−s)#B(m,2−t) implies d(n, m)> 2−s+2−t+2−s−t−1.

We now define new basic dots, similar to forming the trail space (see 1.1.4).
Firstly, for a basic dot =B(n,2−s)∈V we put gd() =

D
s.

Let p be a point in V, then remember we write p(n) for the finite sequence
p0, . . . , pn−1 of basic dots in V. Notice that by definition p0� . . . �pn−1. A
finite sequence =0� . . . �n−1 of basic dots in V is called a graded trail

in (V, � ) (of length n) iff gd()=  for 0≤  < n. The empty sequence is the
unique graded trail of length 0, and denoted©∗. The countable set of graded
trails in (V, � ) is denoted V ogd, notice that V ogd⊂V o={p(n) |n∈N, p∈V}.

The pre-natural space (V ogd, �∗, #∗) (see def. 1.1.4) induces a spread, which
we call V ogd. We show that V ogd is an inductive spread by two claims:

claim For c#∗d∈V ogd there is a genetic bar B on V ogd such that for all b∈B we
have: (b#∗c∨ b#∗d).

proof Let c=c0, . . . , cs and d=d0, . . . , dt, with cs=B(n,2−s), dt=B(m,2−t)
for certain n,m, s, t∈N. By definition c#∗d means B(n,2−s)#B(m,2−t).

By the properties of # for (V ,T# ) (see above), if B(n,2−s)#B(m,2−t), then
d(n, m)> 2−s+2−t+2−s−t−1. This means that for any basic dot e in V with
gd(e)≥ s+ t+3 we can decide: e#B(n,2−s) or e#B(m,2−t), by looking
at e=B(k,2−gd(e)) to see that either d(k, n) or d(k, m) is big enough.
We conclude that the genetic bar B={b∈V ogd | lg(b)=s+ t+3} satisfies the
requirements. (end of claim-proof)
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claim Let U be open in V ogd, and ∈ U . Then BU ={b∈V
o
gd |b#∗lg(b) ∨ [b] ⊆

U} is an inductive bar on V ogd.

proof (Remember the definition of id∗ in 1.1.4.) Looking at , we see that
there are ∈V and t, n, ∈N, ≥ 1 such that [t]⊆ U and id∗(t)=B(n,2−+1).
Determine j,m∈N such that id∗(j)�B(m,2−)�B(n,2−+1). By definition
of � (see A.3.2), we have: d(n, m)< 2−+1−2−=2−. Determine s∈N such
that d(n, m)< 2−−2−s+2. Determine ∈N such that gd(id∗())≥ s.

Now let e∈V with gd(e)=s, say e=B(k,2−s). By the properties above,
we can determine: e#id∗() or e=B(k,2−s)⊆B(n,2−+1)= id∗(t). But
then in turn for any b∈V ogd, lg(b)≥ mx(s, ) we can determine: b#∗lg(b) or
[b] ⊆ U . So BU contains the genetic bar {b∈V ogd | lg(b)=mx(s, )}, and is
therefore inductive. (end of claim-proof)

By the two above claims, we see that V ogd is a ∝ -spread. We leave it to the
reader to verify that (V ogd,T#

o) is homeomorphic to (X, d). (END OF PROOF)

REMARK: The question which representation to choose for complete metric
spaces can probably not be answered in just one way. We believe that de-
tailed study of this question, for various spaces, yields both theoretical and
practical advantages (from the APPLIED perspective). (END OF REMARK)

A.3.13 Proof of proposition 3.5.2 (iv) We prove that an (in)finite product of star-
finite spreads (see def. 4.0.10) is faithful in CLASS and INT. For the proof we
will use some theory developed in the proof of theorem 4.0.8, in paragraph
A.3.18.

PROPOSITION: (CLASS, INT, from 3.5.2) Let ((Vn,T#n ))n∈N be star-finite spraids
derived from the corresponding pre-natural ((Vn, #n , �n ))n∈N. Then the fi-
nite spraid-products ι·≤nσ (V ,T# ) (for n∈N ) and the infinite spraid-product
n∈Nσ (Vn,T#n ) are faithful.

PROOF: We only prove the infinite-product case, the finite-product case is
completely similar and easier. Let U be open in n∈Nσ (Vn,T#n ), determine
∈ U . Since n∈Nσ (Vn,T#n ) is star-finite, following paragraph A.3.18 (def. (d))
we can define the subfann W of V,σ . By BT∗ (see 3.1.2), U is inductively
open, therefore the bar BU

={b∈V,σ |b#lg(b)∨[b]⊆ U} is inductive. By HB∝

(prp. 3.2.1) BU
 contains a finite subbar D on W, therefore we can find N∈N

with NW⊆D� .
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Determine =0, . . . , N∈V,σ such that ≺. Then ∈NW and []⊆ U . For
b=b0, . . . , bN∈V,σ , by the nature of D, if b ≈, then [b]⊆ U . This implies
that
⋂

≤Nπ−1([C])⊆ U , where C={b∈NV |b ≈ }, for ≤N. However, [C] is
a neighborhood of [] in (V ,T# ) for each ≤N, which shows that U is open
in the Tychonoff topology. (END OF PROOF)

A.3.14 Proof of lemma 3.5.3 We prove the technical lemma which is needed for
theorem 3.5.3 (entailing a BISH version of Tychonoff’s theorem).

LEMMA: (Notations as in 3.5.1) Let ∈V0, b∈V1 and let G,H be genetic bars
on (V0), (V1)b respectively. Then G×σ H is an inductive bar on (V0)×

σ
(V1)b.

COROLLARY: For ≤ n let B be an inductive bar on V. Then ι·≤nσ B is an
inductive bar on V,σ

(n) and ι·≤nσ B is an inductive bar on V,σ .

PROOF: By (double) genetic induction. For notational simplicity put V0=V
and V1=W. First let PW be the following property of genetic bars B on basic
subspraids Wb of W: ‘for all ∈V: {©}×

σ
B is an inductive bar on V×

σ
Wb’.

We show by genetic induction that all genetic bars B on basic subspraids Wb

have property PW. Let ∈V, b∈W.

G© If B={©b}, then {©}×
σ
B={(©,©b)} and we are done trivially.

G∝ Else B=
⋃

b′ ∈∝(b)Bb′ where Bb′ has property PW for all b′∈ ∝ (b). Then
{′}×σ Bb′ is an inductive bar on V′×

σ
Wb′ for all ′∈ ∝ (), which implies

that D=
⋃

′∈∝(),b′∈∝(b){′}×
σ
Bb′ is an inductive bar on V×

σ
Wb. Clearly

{©}×
σ
B descends from D and so is inductive also.

By symmetry, for all genetic bars B on basic subspraids V of V we also
obtain PV: ‘for all b∈W: B×σ {©b} is an inductive bar on V×

σ
Wb’.

Next we show that all genetic bars B on basic subspraids V of V have prop-
erty Q: ‘for all b∈W and every genetic bar C on Wb: B×σ C is an inductive bar
on V×

σ
Wb’. Let ∈V, b∈W.

G© If B={©}, then we are done since every genetic bar on Wb has prop-
erty PW.

G∝ Else B=
⋃

′ ∈∝()B′ where B′ has property Q for all ′∈ ∝ (). Let C be
a genetic bar on Wb, we proceed by genetic induction on C.

G© If C={©b}, then we are done since every genetic bar on V has
property PV .
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G∝ Else C=
⋃

b′ ∈∝(b)Cb′ where by induction B′×
σ
Cb′ is an inductive

bar on V′×
σ
Wb′ for all ′∈ ∝ (), b′∈∝(b). Therefore we see that

D=
⋃

′∈∝()b′∈∝(b){′}×
σ
Bb′ is an inductive bar on V×

σ
Wb. Clearly

B×σ C descends from D and so is inductive also.

This proves the lemma. The first part of the corollary follows by induction.
For the second part we show by genetic induction that for every genetic bar
B on a basic subspraid (V,σ(n)) of V,σ

(n) we have: {}Ê∝ B in V,σ . Let ∈V,σ(n).

G© If B={©}, then trivially {}Ê∝ B.

G∝ Else B=
⋃

b∈∝()Bb, where by induction {b}Ê∝ Bb for all b∈ ∝ (). We
have {}Ê∝

⋃

b∈∝(){b} so {}Ê∝
⋃

b∈∝()Bb=B and we are done.

Finally, {©
(n)} equals nV,σ which is an inductive bar on V,σ by lemma 3.3.1.

So any inductive bar on {©
(n)} is an inductive bar on V,σ . (END OF PROOF)

A.3.15 Defining various concepts of locatedness (Partly repeating 4.0.1:)
What are the drawbacks of the concept ‘located in’? First of all, the notion
is not transitive, which is unpractical when working with extensions and sub-
spaces of (X, d). Second, even for a closed located A⊂X, the notion gives
little handhold for ∈X to find ∈A such that # implies #A, which is an
important prerequisite for many constructions involving A. Thirdly, as men-
tioned, the notion is non-topological and this means we cannot use it easily
in the context of topology.

In [Waa1996] several alternatives are given in BISH, of which ‘strongly halflo-
cated in’ (transitive) seems the most fruitful.17 It gives results such as in
the BISH-proof of the Dugundji extension theorem in [Waa1996]. Another re-
sult is that every complete metric space can be isometrically embedded in
a normed linear extension such that it becomes strongly halflocated in this
extension – and where we know of no general proof that it is located.

‘Topologically strongly halflocated’ in INT is equivalent on complete metric
spaces to a topological locatedness property called ‘strongly sublocated in’.
This notion can also be defined for the apartness topology of general natural
spaces, and seems to us important. Our definition of ‘located in’ is easily
seen to be equivalent to the traditional definition, and in this form it opens
the door for adaptations.

17By transitive we mean: if (B, d) is (strongly) halflocated in (A, d) which is (strongly) halflo-
cated in (X, d) then (B, d) is (strongly) halflocated in (X, d).
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DEFINITION: Let (A, d) be a subspace of (X, d), a metric space. Then (A, d) is
(i) located , (ii)halflocated , (iii)sublocated in (X, d) iff: (A, d) is inhabited and

(i) ∀D∈R>1∀∈X∀m∈Z [∃∈A [d(, )<Dm+1] ∨ ∀∈A [d(, )>Dm]]

(ii) ∃D∈R>1∀∈X∀m∈Z [∃∈A [d(, )<Dm+1] ∨ ∀∈A [d(, )>Dm]]

(iii) ∀∈X∀m∈Z [ ∃∈A [d(, )< 2m] ∨ ∃n∈N ∀∈A [d(, )> 2−n]]

If D∈R>1 realizes (ii), we say that (A, d) is halflocated in (X, d) with parame-

ter D. We now strengthen the definition:

(A, d) is (i)∗ strongly located , (ii)∗ strongly halflocated , (iii)∗ strongly sublo-

cated in (X, d) iff:

(i)∗ ∀D∈R>1∀∈X∃y∈A ∀∈A [d(, y)≤D ·d(, ) ]

(ii)∗ ∃D∈R≥1∀∈X∃y∈A ∀∈A [d(, y)≤D ·d(, ) ]

(iii)∗ ∀∈X∃y∈A [#y → ∃n∈N ∀∈A [d(, )> 2−n]]

If D∈R>1 realizes (ii), then (A, d) is strongly halflocated in (X, d) with pa-

rameter D. If (ii) is realized by D=1, then (A, d) is best approximable in
(X, d).

Now let (V ,T# ) be a natural space derived from (V, #, � ), and let (W ,T# )
be a subspace. We say that (W ,T# ) is (i)? #-sublocated , (ii)? strongly #-

sublocated in (V ,T# ) iff:

(i)? ∀∈V ∀ U ∈T# , ∈ U [ ∃y∈W[y∈ U]∨ ∀y∈W[#y]].

(ii)? ∀∈V ∃y∈W [#y → ∀z∈W [#z]].

(END OF DEFINITION)

REMARK: The word ‘strongly’ for (i)∗-(iv)∗ and (ii)? is justified. For ∈X, if y re-
alizes (ii)∗ with parameter D, we can decide: d(, y)<Dm+1 or d(, y)>Dm,
for m∈Z. But d(, y)>Dm implies that for all ∈A: d(, )>Dm−1. This
shows that if (A, d) is strongly halflocated in (X, d), with parameter D, then
(A, d) is halflocated in (X, d) with parameter D2. Then ‘strongly located in’
implies ‘located in’ since {D2 |D∈R>1}=R>1. The other implications can
be obtained in a similar but easier fashion. Notice that if (A, d) is strongly
(half,sub)located in (X, d), then (A, d) is closed in (X, d). For a more extensive
treatment of these properties, see [Waa1996]. (END OF REMARK)
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A.3.16 Proof of proposition 4.0.5
Our example of the eventually vanishing real sequences still needs to be
proven non-metrizable. We repeat from 4.0.5:

PROPOSITION: (
−→
R

ω
,
−→
T

ω

# ) is a natural space which is the non-metrizable direct
limit of (Rn∗,

−→
T

ω

# )n∈N, where (Rn∗,
−→
T

ω

# ) is � -isomorphic to the Euclidean space
(Rn,T#R ) for n∈N+. There is a continuous injective surjection (which does
not have a continuous inverse) from (

−→
R

ω
,
−→
T

ω

# ) to (
−→
R

ω
,T#RN ) as subspace of

(RN,T#RN ).

PROOF: That (
−→
R

ω
,
−→
T

ω

# ) is non-metrizable is seen thus: consider a metric d on
(
−→
R

ω
,
−→
T

ω

# ), then d is also a metric on the respective (Rn,T#R ) for n∈N+ which
respects the canonical inclusion relation n : Rn → Rn+1. For n∈N+ let 0Rn be
the origin in Rn and let Bn

d
(0Rn ,2−n) be the open d-sphere around this origin

with radius 2−n. We can construct a series of sets (Un)n∈N+ where each Un is
a d-open neighborhood in Rn of 0Rn and n(Un)⊂Un+1, and where in addition
Bn
d
(0Rn ,2−n) contains a point which is not contained in Un.

Remember that for ∈
−→
R

ω
the m-th basic dot m (if not equal to the maximal

dot) is a finite sequence of closed rational intervals ([j, bj])j≤s for some
s∈N and j <bj for all j≤ s. We identify m with the cartesian product set
(m)=j ≤ s[j, bj] in the Euclidean space Rs+1. Now it is not difficult to see
that the subset {y ∈

−→
R

ω
| ∃≡y[ ∀n∈N[(n)⊂Un] ]} is open in

−→
T

ω

# , but
cannot be open in the metric topology generated by d.

Further, the identity on
−→
R

ω
is a continuous injective surjection (which does

not have a continuous inverse) from (
−→
R

ω
,
−→
T

ω

# ) to (
−→
R

ω
,T#RN ) as subspace of

(RN,T#RN ). One sees this by considering that on RN the apartness topology
T#RN coincides with the metric d

RN
-topology.

Finally, that (Rn∗,
−→
T

ω

# ) is � -isomorphic to the Euclidean space (Rn,T#R ) for
n∈N+ is left to the reader as an exercise. (END OF PROOF)

A.3.17 Proof of corollary 4.0.8
For didactical reasons we prove the metrizability of ∝ -fans first (the corollary
of theorem 4.0.8), and metrizability of star-finite ∝ -spreads (theorem 4.0.8
itself) in the next paragraph. The proof of the theorem for star-finite ∝ -
spreads employs the same main strategy, but is lengthy and involves some
hard work on details, which tends to obscure this strategy.

The following two paragraphs contain the longest proof in the monograph.
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In order to prove that every star-finitary space is metrizable, we will need
several lemmas, to which we assign uppercase letters A, B, . . .. In a way
we follow the classical strategy used by Urysohn (see [Ury1925b]) to show
that (classically) a normal space (X,T ) with a countable base is metrizable.
Urysohn embeds such an (X,T ) in the Hilbert cube, and this is what we do
also for a star-finite ∝ -spread, although our construction of such an embed-
ding is different.18

For this construction we use the ternary real numbers Rter , and specifically
[0,1]ter. We refer the reader to the examples’ section A.2.2 for the relevant
definitions.

We rearrange the ingredients and the route followed in [Waa1996], partly
in order to avoid the use of AC10.19 This calls for a short description of our
route beforehand. It is possible to prove metrization for ∝ -fans, using the
Urysohn metrization lemma (A), a splitting lemma (B), and the Urysohn func-
tion lemma (C) below.20 To generalize this to a star-finite ∝ -spread (V ,T# ),
we associate to points  in V a subfan W of (V ,T# ) which almost acts as a
neighborhood of  in (V ,T# ). Using an elaborate adaptation of lemma (C)
we can again apply the Urysohn metrization lemma to conclude metrizability
of (V ,T# ). All in all this will take up numerous pages.

In this and the following paragraph we need some definitions, to which we
assign lowercase letters a, b, etc.

DEFINITION: (a)
Let (V ,T# ) be a spraid derived from (V, #, � ). Let A⊆V, then we write nA for
{∈A | lg()=n}, for n∈N, and A� for {b∈V | ∃∈A[b�]}. Also remember
that we write ≈ for the touch-relation on basic dots which is the complement
of the pre-apartness relation #.

Now let ∈V. We say that  is a successor point iff lg(n)=n for all n∈N
(which implies 0=© and n+1∝ n for n∈N ). One easily sees that any y∈V
contains a unique subsequence y∝ ≡y such that y∝ is a successor point.
This means that without loss of generality we can conveniently concentrate
on successor points.

18For one thing, it is a real construction. The key idea can also be seen as an onion strat-
egy,but different from the classical one.

19We comment on the relation between the intuitionistic proof in [Waa1996] and the proof
here, in the comments’ section, paragraph A.5.7.

20The term ‘Urysohn’s lemma’ is usually reserved for the related classical result that a
space is ‘normal’ iff two disjoint closed subsets can be separated by a continuous function to
[0,1]. See our lemma (C) and its generalization (E) which we call ‘Urysohn function lemma’.
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We wish to expand (V ,T# ) with a single isolated point, which w.l.o.g. can
be taken to be • = •, •, . . .. Strictly speaking we put V• =

D
V∪{•}∗ where

{•}∗={•(n) |n∈N, n≥ 1} is the set of all finite sequences of the symbol •,
and specify that ©�•(n)�•(n+1) and •(n)# for all © 6=∈V, n≥ 1. The
resulting spraid is denoted (V •,T# ) or simply V •. (END OF DEFINITION)

LEMMA: (A) (Urysohn metrization lemma)
Let (V ,T# ) be a spraid derived from (V, #, � ), where we write ≈ for the
complement of the pre-apartness relation #. Suppose that:

(i) For all n∈N, for all #b∈nV• there is a given morphism ƒ,b from V • to
[0,1], such that ƒ,b | V• ≡R0 and ƒ,b | V•b ≡R1.

(ii) For all n∈N and #b∈nV•: if c∈nV• with #c#b then ƒ,b | V•b ⊆[
1
3 ,

2
3]

(iii) For any #-open U ⊆V and successor point ∈ U there is an n∈N such
that for all ∈nV we have:  ≈ n implies []⊆ U .

Then (V ,T# ) is metrizable.

PROOF: There is of course a canonical morphism ƒ from V • to [0,1] such that
ƒ ()≡R0 for all ∈V •. So by the assumption (i), we can define for all n∈N
and all , b∈nV• a morphism ƒ,b such that  ≈ b implies ƒ,b()≡R0 for all
∈V •, and #b implies ƒ,b | V• ≡R0 and ƒ,b | V•b ≡R1.

Now let h be an enumeration of
⋃

n∈N
nV•×nV•. Define a metric d on V • by

putting d(, y)=
∑

m∈N 2
−m · | ƒh(m)()− ƒh(m)(y) | . Then we see that d(, y)> 0

iff #y, and that d is a metric on V • (this shows weak metrizability).

To show that d metrizes (V ,T# ), let U be #-open in(V ,T# ). We show that U
is d-open as well. For this let ∈ U be a successor point. By assumption (iii)
there is an n∈N such that for all ∈nV we have:  ≈ n implies []⊆ U . Now
suppose we have a successor point y∈V such that yn#n. Determine m∈N
such that h(m)=(•(n), n). Clearly •(n)#yn#n#•(n), so by assumption (ii)
we see that ƒ•(n),n(y)∈[

1
3 ,

2
3], whereas ƒ•(n),n()≡R1.

This implies that d(, y)> 2−m−1 · 13 and so in turn that B(,2−m−1 · 13 )⊆ U .
Since ∈ U is arbitrary, this shows that U is d-open as well. (In fact d

metrizes V •, but this is unimportant). (END OF PROOF)

We turn to our splitting lemma. Remember that for a spraid (V ,T# ) derived
from (V, #, � ), and subsets A,B of V we write A#B iff #b for all ∈A, b∈B.
We write A ≈ B iff  ≈ b for some ∈A, b∈B. We shortly write #B,  ≈ B for
{}#B, {} ≈ B respectively.



Proofs and additional definitions 147

LEMMA: (B) (splitting lemma)
Let (W ,T# ) be a ∝ -fan derived from (W, #, � ). Suppose A,B are finite sub-
sets of W such that A#B. Then there is an N∈N such that for all c, d∈NW we
have: (c ≈ A∧d ≈ B) implies c#d (and (c ≈ NA� ∧d ≈ NB� ) implies c#d).

PROOF: By proposition 3.4.1(ii), C={c∈W |c#A ∨ c#B} is an inductive bar
on W. By HB∝ (crl. 3.2.1) C contains a finite bar C′. Let A′={c∈C′ |c ≈ A},
then A′ is finite and A′#B. So by repeating our argument we find a finite bar
C′′ on W such that for all c∈C′′ we have c#A′ or c#B. Put N=mx({lg(c) |
c∈C′′∪A∪B}). Then for all c, d∈NW we have: (c ≈ A∧d ≈ B) implies c#d
(and (c ≈ NA� ∧d ≈ NB� ) implies c#d). (END OF PROOF)

The splitting lemma tells us that for a ∝ -fan (W ,T# ), finite apart A#B⊂W
lead (for big enough N∈N) to a partition of NW in three sets C,D, E where
A ≈ C, A#D#B, E ≈ B and moreover C#E. We will use such partitions ob-
tained by lemma (B) to construct morphisms from (W ,T# ) to σ3,ter. In these
constructions, to such C we assign a 0, to such D a 1 and to such E a 2.

For this, remember our definition in A.2.2 of σ3 = ({0,1,2}
∗, #ω , �ω) and the

surjective morphism ƒevl,3 from σ3 to [0,1]ter. Pulling back #R using ƒevl,3 we
saw that ƒevl,3 is a � -isomorphism from σ3,ter=({0,1,2}

∗, #R , �ω) to [0,1]ter.

DEFINITION: (b)
We define a lexicographical ordering <lex on N∗ putting, for  = 0, . . . n−1
and b=b0, . . . , bm−1 in N∗:

<lex b iff (b≺∨ ∃  < n,m[0, . . . , −1 = b0, . . . , b−1∧ <b]).

By slight abuse of notation we write nσ3 for {∈{0,1,2}∗ | lg()=n}. For
each n∈N , <lex induces a finite linear ordering on nσ3 . For ∈nσ3 ,  6=0(n)
we write Pre() for the immediate predecessor of  in this ordering. For
∈nσ3 ,  6=2(n) we write Sc() for the immediate successor of  in this
ordering. Additionally we put Pre(0(n)) =

D
−1 and Sc(2(n)) =

D
3. (END OF

DEFINITION)

LEMMA: (C) (Urysohn function lemma for fans)
Let (W ,T# ) be a ∝ -fan derived from (W, #, � ). Let #b∈mW for certain
m∈N. Then there is a canonical morphism ƒ,b from W to [0,1] such that:

(i) ƒ,b |W
≡R0 and ƒ,b |Wb

≡R1.

(ii) If c∈mW with #c#b then ƒ,b |Wc
⊆[13 ,

2
3]
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PROOF: We inductively define, for all ∈{0,1,2}∗∪{−1,3}, a subset W⊂W
such that for all n∈N :

(∗) For , j∈nσ3 ∪{−1,3} the set W is decidable. Moreover W#Wj when-
ever j 6∈{Pre(), ,Sc()}, and if  6= j are in nσ3 then W ∩Wj=∅.

(∗∗) For ∈{0,1,2}∗ and s∈{0,1,2} we have W?s⊂W.

(∗∗∗) There is t∈N such that all c∈ tW are in some W where ∈nσ3 .

Basis: for n=0, put W©=W, W−1=W and W3=Wb, then W−1#W3, and (∗∗)
and (∗∗∗) are trivially fulfilled so we are done.

Induction: suppose for n∈N and ∈nσ3 the subsets W have been defined
such that (∗), (∗∗), and (∗∗∗) above hold.
Let ∈nσ3 . Determine the least t∈N such that all c∈ tW are in some Wj for
j∈nσ3 . Now put A=WPre() ∩ tW and B=WSc() ∩ tW. Then by (∗) we see that
A#B⊂W are finite subsets of W, so by lemma (B) we can find the smallest
N≥ t+1 such that for all c, d∈NW we have: (c ≈ A∧d ≈ B) implies c#d.
Let C={c∈NW |c ≈ A}, D={c∈NW |A#c#B}, and E={c∈NW |c ≈ B}. Then
A#D#B and C#E. Put W ?0=C� ∩W, W ?1=D� ∩W, and W ?2=E� ∩W.

This defines W for all ∈n+1σ3 . It is straightforward to see that (∗) and (∗∗)
hold for n+1. To see that (∗∗∗) holds as well, it suffices to consider that nσ3 is
finite, and that therefore in our procedure above there was j∈nσ3 with (copy-
ing notations) a maximal Nj ≥ t+1 compared to other ∈nσ3 . This means that
all c∈NjW are in some W for ∈n+1σ3 .

We define a � -morphism h,b from W to σ3,ter by specifying h,b on W. Let
c∈W, then there is a maximal s∈N, s≤ lg(c) such that c is in W for a unique
∈ sσ3 . We now simply put h,b(c)= .

claim h,b is a � -morphism from W to σ3,ter.

proof It follows from (∗), (∗∗) and (∗∗∗) above that for c�d∈W we have
h,b(c)�h,b(d). Let ∈W be a successor point, we need to show that h,b()
is a point in σ3 . This follows easily however from (∗∗∗) above, since we see
that for all n∈N there is a t∈N such that h,b(t)∈nσ3 . Finally, suppose
y∈W is a successor point such that h,b(y)#Rh,b(), then we must show
y#. Since h,b(y)#Rh,b(), we can determine n∈N and , j∈nσ3 such that
#R j and h,b(y)≺  and h,b()≺ j. However, #R j equals j 6∈{Pre(), ,Sc()}.
There is s∈N such that ys∈W and s∈Wj, where moreover W#Wj since
j 6∈{Pre(), ,Sc()}. So we see that ys#s and so y#. (end of claim-proof)
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We can now define ƒ,b =
D
ƒevl,3 ◦h,b (which is canonical since h,b and ƒevl,3 are

constructed canonically). Clearly ƒ,b |W
≡R0 and ƒ,b |Wb

≡R1 (proving (i) of
the lemma). So the only thing left to prove is that if c∈mW with #c#b then
ƒ,b |Wc

⊆[13 ,
2
3]. And this follows trivially from our construction, since there is

s∈N such that {d∈Wc | lg(d)≥ s}⊂W1 and ƒ,b |W1
⊆[13 ,

2
3]. (END OF PROOF)

PROPOSITION: Every ∝ -fan is metrizable.

PROOF: Let (W ,T# ) be a ∝ -fan. Then trivially W • is also a ∝ -fan. Therefore
by lemma (C) above, we find:

(i) For all n∈N, for all #b∈nW• there is a given morphism ƒ,b from W •

to [0,1], such that ƒ,b |W• ≡R0 and ƒ,b |W•b ≡R1.

(ii) For all n∈N and #b∈nW•: if c∈nW• with #c#b then ƒ,b |W•c ⊆[
1
3 ,

2
3].

claim Let U ⊆W be #-open and let ∈ U be a successor point. Then there
is an n∈N such that for all ∈nW we have:  ≈ n implies []⊆ U .

proof By definition 3.4.1 of ‘∝ -spread’, U is ∝ -open, which means that
BU
={b∈W |b#lg(b) ∨ [b] ⊆ U} is an inductive bar on W. Now since W is

a fan, by HB∝ (crl. 3.2.1) we find a finite subbar B′⊆BU
 on W. Let n be the

maximum of {lg(b) |b∈B′}. Let ∈nW. We know by the properties of B′ that
#n or []⊆ U . Therefore  ≈ n implies []⊆ U . (end of claim-proof)

By the claim, we see that (W ,T# ) satisfies the conditions (i), (ii) and (iii) of
the Urysohn lemma (A). Therefore (W ,T# ) is metrizable. (END OF PROOF)

To prove corollary 4.0.8, we define ‘one-point ∝ -fanlike extension’ (see also
3.4.2) to represent ‘locally compact’ spaces, just as ∝ -fanlike spaces repre-
sent ‘compact’ spaces.21

DEFINITION: (c)
Let (V ,T# ) be a spread, then (V ,T# ) has a one-point ∝ -fanlike extension

iff there is a ∝ -fan (W ,T#2 ) (derived from (W, #2 , �2)) and a function ƒ from
V• to W such that putting #1b iff ƒ ()#2 ƒ (b), we have that ƒ is an induc-
tive isomorphism from (V •,T#1 ) to (W ,T#2 ) where in addition ƒ (•)#2 ƒ () for
all ∈V and (V ,T#1 ) is identically automorphic to (V ,T# ). More generally,

21The difference with the CLASS and BISH notions is that our analogons need not be locally
metrically complete. This can be addressed satisfactorily, in the sense that local complete-
ness turns out to be a natural-topological property (invariant under isomorphisms). But we
will leave this for subsequent expositions on natural topology, hopefully written by others.
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a natural space (V ,T# ) is said to have a one-point ∝ -fanlike extension iff
(V ,T# ) is ∝ -isomorphic to a spread with a one-point ∝ -fanlike extension.
(END OF DEFINITION)

COROLLARY: (which is the same as corollary 4.0.8) Every ∝ -fanlike space is
metrizable (‘every compact space is metrizable’), and every space with a
one-point ∝ -fanlike extension is metrizable (‘every locally compact space is
metrizable’).

PROOF: We only need to prove that a spread (V ,T# ) (derived from (V, #, � ))
with a one-point ∝ -fanlike extension is metrizable. For this, let (W ,T#2 ) be
a ∝ -fan (derived from (W, #2 , �2)) and ƒ a function from V• to W such that
putting #1b iff ƒ ()#2 ƒ (b), we have that ƒ is an inductive isomorphism from
(V •,T#1 ) to (W ,T#2 ) where in addition ƒ (•)#2 ƒ () for all ∈V.

By the above proposition (W ,T#2 ) is metrizable. This means that (V •,T#1 ) is
metrizable, say by metric d. Then the restriction of d to V metrizes (V ,T# ).
This follows trivially from the fact that T# |V = T#1 |V , which in turn follows
trivially from the fact that •#1 for all ∈V. (END OF PROOF)

A.3.18 Proof of theorem 4.0.8
The key to the generalization of our results in paragraph A.3.17 is the follow-
ing simple observation. In a star-finite (V ,T# ), for each  in V the equiva-
lence class of , that is {y∈V |y≡} is contained in a subfan W of (V ,T# ).
The spine of this subfan W is formed by {∈V | ≈ m | lg(m)= lg()}. But
we need to do some extra work to turn this spine into a subfan. Specifically,
if  is in the spine but all continuations b≺ are seen to be not in this spine
(which is decidable since (V ,T# ) is star-finite), we need to ensure that  still
contains a point in W.

To avoid cumbersome repetition of the prevailing conditions, we state the
following:

CONVENTION: From now on, without loss of generality, we assume (V ,T# )
to be a star-finite ∝ -spread, derived from (V, #, � ) where  : N → V is
an enumeration of V={n |n∈N} such that for each n,m∈N we have that
n≺m implies n>m. The touch-relation ≈ is the complement of # on
V×V. We concentrate on successor points (see def. (a) above). Also we
write ‘m=μs∈N[P(s)]’ as abbreviation for ‘m is the smallest natural number
for which P(m) holds’. (END OF CONVENTION)
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DEFINITION: (d)
Let ∈V be a successor point. Using the enumeration  we define a subfan
W of (V ,T# ) by inductively describing nW for each n∈N . Of course 0W =

D

{©}. Now suppose that nW has been defined for given n∈N , then put

n+1W =
D
{m∈n+1V | m ≈ n+1∨

∃∈nW∀b∈∝()[b#n+1∧m=μs∈N[s≺]]}.

Then W is a subfan of (V ,T# ) such that {y∈V |y≡}⊆W. For n∈N , we
are mostly interested in the subset nW

≈ =
D
{∈nW | ≈ n} of nW. Finally,

let y∈V be arbitrary, then y has as subsequence the successor point y∝ ≡y
(see def. (a) above), and we put Wy=Wy∝ . (END OF DEFINITION)

Next we show that W acts almost like a neighborhood of  in (V ,T# ). We
need this later on, as prerequisite (iii) of the Urysohn metrization lemma.

LEMMA: (D)
Let U be open in (V ,T# ), and let ∈ U . Then there is N∈N such that for all
∈NV we have:  ≈ N implies []⊆ U .

PROOF: By definition 3.4.1 of ‘∝ -spread’, U is ∝ -open, which means that
BU
={b∈V |b#lg(b) ∨ [b] ⊆ U} is an inductive bar on V. Now since W is

a subfan and BU
 is monotone, by HB∝ (crl. 3.2.1) we find a finite subbar

B′⊆BU
 on W. Let N be the maximum of {lg(b) |b∈B′}. Let ∈NV. We know

that if  6∈W then #N . Else, if ∈W we know by the properties of B′ that
#N or []⊆ U . We combine this to conclude for all ∈NV that  ≈ N implies
[]⊆ U . (END OF PROOF)

We need a sequence (W,n)n∈N of very similar but slightly larger fans than
W for our purposes, where W,n⊆W,n+1 for each n∈N. For this we expand
our touch relation ≈ inductively to equivalent touch-relations ( n≈ )n∈N (‘equiv-
alent’ meaning that they induce the same apartness relation on points).

DEFINITION: (e)
Let ≈′⊂V×V, and write # ′ for the complement of ≈′. We say that ≈′ is a
≈ -equivalent touch-relation iff ≈′ is decidable and for all points , y in V, we
have: #y iff there is n∈N with n# ′yn. We say that ≈′ is star-finite iff for
each ∈V the subset {b∈V | lg(b)= lg()∧b ≈′} is finite.

We inductively define decidable relations ( n≈ )n∈N which are ≈ -equivalent for
n≥ 1 as follows. Let 0

≈ ={(, b) |, b∈V |�b ∨ b�}. Suppose for n∈N
that n≈ has been defined. Let , b∈V with m= lg()≤ lg(b). Then 

n+1
≈ b and
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b
n+1
≈  iff there is c∈mV such that  n≈ c and c ≈ b. (The idea is that  n≈ b iff

there is a ≈ -trail of length n from  to b which does not use basic dots d with
lg(d)< lg()≤ lg(b). Notice that 1≈ equals ≈ .).22

Let ∈mV for certain m∈N, then we let Stn()={b∈mV |
n≈ b}, which is a

finite set. For St1() we also simply write St(). For the complement of n≈ we
write 6 n≈ and for subsets A,B of V we write A 6 n≈ B iff  6 n≈ b for all ∈A, b∈B.
We write A

n≈ B iff  n≈ b for some ∈A, b∈B. We shortly write  6 n≈ B,  n≈ B

for {} 6 n≈ B, {} n≈ B respectively.

For ∈V we define W,n as the subfan of (V ,T# ) which we obtain by substi-
tuting n≈ for ≈ and 6 n≈ for # in the definition (d) of W above.

Finally, for n,m∈N put nW,m

≈ =
D
{∈nW,m |

m≈ ∝n}, where ∝≡ is the rele-
vant successor point, see def. (a). (END OF DEFINITION)

To see that the definition of W,n is valid, it suffices to check that n≈ is again
star-finite (for ∈V, the set {b∈V | lg(b)= lg()∧b n≈ } is finite).

Lemma (B) above can now be abbreviated thus: let (W ,T# ) be a ∝ -fan
derived from (W, #, � ). Suppose A,B are finite subsets of W such that A#B.
Then there is an N∈N such that NA� 6

3
≈ NB� . 23

We use lemma (B) to generalize the Urysohn function lemma (C) to (V ,T# ).
This is an arduous task, which we try to make palatable by dividing the proof
in two parts. In the first part we detail the construction (for #b∈MV and for
∈{0,1,2}∗∪{−1,3}) of subsets V⊂V such that in analogy to lemma (C) for
, j∈nσ3 ∪{−1,3} the set V is decidable; if j 6∈{Pre(), ,Sc()} then mV#mVj
for all m≥M, and for , j∈nσ3: if  6= j then V ∩Vj=∅. Also for ∈{0,1,2}∗ and
s∈{0,1,2} we have V?s⊂V.
In the second part of the proof these sets will help us to define a morphism
h,b to σ3,ter, which using ƒevl,3 can be turned into the desired morphism ƒ,b.

LEMMA: (E) (Urysohn function lemma, generalizing lemma (C))
Let the basic dots #b be in MV for certain M∈N. Then there is a canonical
morphism ƒ,b from V to [0,1] such that:

(i) ƒ,b | V ≡R0 and ƒ,b | Vb ≡R1.

(ii) If c∈MV with #c#b then ƒ,b | Vc ⊆[
1
3 ,

2
3]

22The touch-relation
0≈ could also be named ≈ω since it corresponds to the ‘naked’ spread

(V ,T#ω ) where we have stripped V of the apartness relation #. Compare this to our discussion
of R#ω derived from (σR ∝, #ω , � ) and Hawk-Eye in example A.2.0.

23This shows that
n≈ is ≈ -equivalent for n≥ 1.
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PROOF:

Part one
We first put V−1=V and V3=Vb. Then V−1#V3.
We then inductively define, for n∈N and ∈nσ3 , subsets V⊂V as well as a
subset Secn⊂V such that (except for =©ω ∈0σ3) a basic dot c is member of
any of these sets iff lg(c)≥M, and in addition we have:

(∗) For ∈nσ3 the set V is decidable and V=(V)� .

(∗∗) For , j∈nσ3 ∪{−1,3}, if j 6∈{Pre(), ,Sc()} then V#Vj, and if  6= j are
in nσ3 then V ∩Vj=∅.

(∗∗∗) For j∈n−1σ3 and s∈{0,1,2} we have Vj?s⊆Vj.

When our construction is done, we find that for all ∈V and all n∈N there is
t∈N and ∈nσ3 such that t ∈V

Basis: for n=0, the only member of nσ3 is ©ω . Put V©
ω
=V. Then V−1#V3,

and (∗), (∗∗) and (∗∗∗) are trivially fulfilled so we are done.

Induction: suppose for n∈N and all ∈nσ3 the subsets V with properties (∗),
(∗∗) and (∗∗∗) have been defined. Suppose the basic dot c is in some V for
∈nσ3 . When trying to classify c on the next level n+1, we can only be sure
of making the right choice if all c’s neighbors and their neighbors (in other
words all members of St2(c)) are classified on level n. We therefore first put:

Secn =
D
{c∈V | lg(c)≥M∧ ∀d∈St2(c)∃ j∈nσ3 [d∈Vj]}.

Secn is the decidable set of ‘n-secure’ basic dots in our classification scheme.
(We take Sec0=(MV)� to fulfill (ii) of the lemma.). Now for ∈nσ3 define:

V ?0 =
D
(
⋃

t∈N{c∈ tV |c∈Secn∧c ≈ tVPre()∧c 6
2≈ tVSc() })� .

V ?2 =
D
(
⋃

t∈N{c∈ tV |c∈Secn∧c ≈ tVSc()∧c 6
2≈ tVPre() })� .

V ?1 =
D

⋃

t∈N{c∈ tV |c∈Secn∧c 6∈V ?0∧c 6∈V ?2∧c# tVPre()∧c# tVSc() }.

Notice that if for c∈ tV we know c# tVPre()∧c# tVSc(), then c can still be in
V ?0 or V ?2, simply because there can be a d � c which is in V ?0 or V ?2.

The sets V?s are decidable and monotone, since ≈ is decidable and for c∈V
the sets St2(c) and {b∈V |c≺b} are finite. For , j∈n+1σ3 ∪{−1,3} we see
that j 6∈{Pre(), ,Sc()} implies V#Vj, and if  6= j are in n+1σ3 then V ∩Vj =
∅. This establishes (∗) and (∗∗), and (∗∗∗) follows straight from the definition.

We will use the sets (V)∈{0,1,2}∗ in a way similar to the proof of lemma (C).
But other than in that proof, for n∈N we cannot determine a uniform level
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N on V such that for t ≥N all c∈ tV are in some V with ∈nσ3 . However, for
∈V we can use the fans (W,m)m∈N defined in (e) to show that there still is
an N∈N such that N is in some V with ∈nσ3 .
This we achieve in the second part of the proof, using a number of claims.
We then conclude that the desired morphisms h,b and ƒ,b can be derived
from our construction above just as in the proof of lemma (C).

Part two
We need to prove that for ∈V, for all n∈N there is ∈nσ3 such that ∈ [V]

(which is equivalent to there being an N∈N with N ∈V). Since V©
ω
=V, this

is trivial for n=0.
We use the sets (Secn)n∈N and a form of double induction, on n∈N and on
m∈N where m is the index of the fans (W,m)m∈N which are needed to make
the induction step.

The induction basis where n=0 is trivial: clearly for m, t∈N such that t ≥M
we have: ∀c∈ tW,m

≈ ∃ ∈nσ3 [c∈V], since V©
ω
=V. We now turn to the induc-

tive step going from n to n+1. We have to expand our strategy to W,m+2

to ensure that c∈Secn for the relevant c∈W,m, so that these c have no
unexpected neighbors and can be classified on level n+1.

claim Let ∈V and n,m, t∈N such that t ≥M and ∀c∈ tW,m+2

≈ ∃ ∈nσ3[c∈V].
Then: ∃N∈N ∀c∈NW,m

≈ ∃ j∈n+1σ3[c∈Vj].

proof By the conditions, c∈Secn for all c∈ (tW,m

≈ )� . For ∈nσ3 we see by
(∗∗) above: tVPre()# tVSc(). Put A= tVPre() ∩W,m+2 and B= tVSc() ∩W,m+2,
then A#B are finite subsets of W,m+2, so by our splitting lemma (B) there is
an N∈N, N ≥ t such that for all c, d∈NW,m+2 we have: (c ≈ NA� ∧d ≈ NB� )
implies c#d. Again, for all c∈NW,m

≈ we also have c∈Secn.

By definition (e) and the choice of A,B we see that for c∈NW,m

≈ the condi-
tions c ≈ NA, c

2≈ NA equal the conditions c ≈ NVPre(), c
2≈ NVPre() and likewise

the conditions c ≈ NB, c
2≈ NB equal the conditions c ≈ NVSc(), c

2≈ NVSc().

Therefore for c∈NW,m

≈ ∩V we can decide: case 0 c ≈ NVPre()∧c 6
2≈ NVSc(),

so c∈V ?0 OR case 1 c#NVPre()∧c#NVSc(), then we must check case 1.0

there is a d � c which is already in V ?0, then c∈V ?0 or case 1.2 there is
a d � c which is already in V ?2, then c∈V ?2 or else case 1.1 c∈V ?1 OR
case 2 c ≈ NVSc()∧c 6

2≈ NVPre(), then c∈V ?2.

This shows that for all c∈NW,m

≈ ∩V we can find j∈n+1σ3 with c∈Vj. Finding
for each ∈nσ3 a likewise N, put N=mx({N | ∈nσ3}). (end of claim-proof)
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claim For all n,m∈N there is an N∈N such that ∀c∈NW,m

≈ ∃ ∈nσ3 [c∈V].

proof By double induction.
Basis: for n=0 the statement is trivially true for all m∈N.
Induction: Suppose the statement is true for given n∈N and all m∈N. Then
for m∈N, there is t∈N such that t ≥M and ∀c∈ tW,m+2

≈ ∃ ∈nσ3 [c∈V]. By
the previous claim, there is an N∈N such that ∀c∈NW,m

≈ ∃ ∈n+1σ3 [c∈V].
(end of claim-proof)

The claim guarantees that our next construction will define a morphism. We
use the sets V to define a canonical function h,b from V to {0,1,2}∗, quite
similar to the proof of lemma (C). For n∈N and c∈nV put:

h,b(c) =
D

the unique  in {0,1,2}∗such that: lg()≤ lg(c)=n and c∈V and
∀ j∈{0,1,2}∗[(lg(j)≤ n∧c∈Vj)→ �ω j].

That this definition is valid is easily seen, since there are only finitely many
decidable conditions to check and c is certainly in V©

ω
.

claim h,b is a � -morphism from V to σ3,ter.

proof It follows from (∗∗∗) above that for c�d∈V we have h,b(c)�h,b(d).
Let ∈V, we need to show that h,b() is a point in σ3 . This follows eas-
ily however from the claim above, since we see that for all n∈N there is
an N∈N such that h,b(N)∈nσ3 . Finally, suppose y∈V is a point such that
h,b(y)#Rh,b(), then we must show y#. Since h,b(y)#Rh,b(), we can
determine n∈N and , j∈nσ3 such that #R j and h,b(y)≺  and h,b()≺ j.
However, #R j equals j 6∈{Pre(), ,Sc()}. There is s∈N such that ys∈V
and s∈Vj where V#Vj since j 6∈{Pre(), ,Sc()} (by (∗∗)), so we see that
ys#s and so y#. (end of claim-proof)

We define: ƒ,b =
D
ƒevl,3 ◦ h,b (canonically since h,b and ƒevl,3 are constructed

canonically). Clearly ƒ,b |W
≡R0 and ƒ,b |Wb

≡R1, proving (i) of the lemma.

The only thing left to prove is that if c∈MW with #c#b then ƒ,b |Wc
⊆[13 ,

2
3].

Yet it follows from our construction that c∈V1. Also trivially ƒ,b | V1 ⊆[
1
3 ,

2
3].

(END OF PROOF)

THEOREM: (from 4.0.8) Every star-finitary natural space is metrizable.

PROOF: It suffices to prove the theorem for our star-finite ∝ -spread (V ,T# ).
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claim (V ,T# ) meets the conditions of the Urysohn metrization lemma (A).

proof We need to show:

(i) For all n∈N, for all #b∈nV• there is a canonical morphism ƒ,b from
V • to [0,1], such that ƒ,b | V• ≡R0 and ƒ,b | V•b ≡R1.

(ii) For all n∈N and #b∈nV•: if c∈nV• with #c#b then ƒ,b | V•
c
⊆[13 ,

2
3]

(iii) For any #-open U ⊆V and successor point ∈ U there is an n∈N such
that for all ∈nV we have:  ≈ n implies []⊆ U .

Ad (i) and (ii): Consider that (V •,T# ) is again a star-finite ∝ -spread. Now
apply the Urysohn function lemma (E) above.
Ad(iii): this is precisely the content of lemma (D) above. (end of claim-proof)

This shows that (V ,T# ) satisfies the requirements of the Urysohn metrization
lemma (A), and so (V ,T# ) is metrizable. (END OF PROOF)

A.3.19 Proof of meta-theorem 4.2.4
The two-player game LIfE serves as an illustration of our belief that INT can
be (formally) interpreted in RUSS also, in an elegant way. We state and prove:

META-THEOREM: (repeated from 4.2.4)

(i) In LIfE, we can prove CP.

(ii) Suppose GoD is omniscient. Then we can prove ¬ ∃B⊂N∗[B is a non-
inductive bar on N ] for LIfE.

(iii) Given enough time, HuMaN can discover that by an overwhelming odds
ratio, GoD plays only recursive sequences.

COROLLARY: In CLASS, we can prove CP and BT for the game LIfE.

PROOF: Ad (i). Suppose that HuMaN has a set A ⊆ NN×N such that in LIfE:
∀α∈NN∃n∈N [(α, n)∈A]. This means: for any sequence α played by GoD,
HuMaN can produce at a finite moment in time an n∈N such that (α, n)∈A.

Now let α∈NN. Let GoD play the sequence γ which mimicks α, starting
out as γ=α(0), α(1), . . . without revealing any information to HuMaN. Say at
point m in time (when GoD has revealed precisely α(m), the first m values
of α), HuMaN produces n such that (γ, n)∈A. By the rules of LIfE, player GoD

may switch to any β (computable, but HuMaN does not know this) such that
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β(m)=γ(m)=α(m) to conclude that for any such β we have (β, n)∈A. There-
fore ∀α∈NN∃m,n∈N∀β∈NN [α(m) = β(m) → (β, n)∈A], which proves CP

for LIfE.

Ad (ii). We use the correspondence between natural Baire space N and NN,
described in 2.0.2. Suppose HuMaN has a set B⊂N∗ which is non-inductive
(meaning it does not descend from a genetic bar on N ), and a bar C⊆N∗

on N with B⊆C. Since B is non-inductive, with omniscience GoD can play a
sequence α=p∗ where α=p∈N is given by p = p0, p1, . . . (with p0=© and
p+1∝p) and where (p)� ∩B is non-inductive on N∗p=(p)� for all  up until
and including the n for which α(n)=pn∈C (since C is claimed to be a bar,
HuMaN must produce such n at some finite point in time).

Having received from HuMaN the n for which α(n)=pn∈C, GoD switches to
the recursive sequence β∈NN such that β=pn ?0. To arrive at β, GoD can
claim to have used the recursive sequences p1 ?0, p2 ?0, . . . and to have
switched n−1 times, therefore GoD has played by the rules.

We see now, that α(n)=pn is in C but not in B, since pn∈B would imply that
(pn)� ∩B is inductive on N∗pn=(pn)� , contradicting the above. We conclude:
B 6=C. This proves (ii).

Ad (iii). This is basically the same as the physical experiment described in
[Waa2005], section 7. HuMaN can build a covering of the recursive unit in-
terval with a sequence of rational intervals (Rn)n∈N such that the sum of
the lengths of these intervals does not exceed 2−40. Asking GoD for a non-
recursive sequence α∈[0,1], HuMaN will eventually discover that α falls
within one of the intervals Rn. (GoD can only switch finitely many times,
and then in the end is stuck with a recursive α, which will eventually be cap-
tured by some Rn.) The odds of this happening for a non-recursive α are
overwhelmingly small, proving (iii).

The corollary follows from (i) and (ii), since with classical logic GoD is omni-
scient and ¬ ∃B⊂N∗[B is a non-inductive bar on N ] is equivalent to ‘every
bar on N is inductive’. (END OF PROOF)
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A.4 CONSTRUCTIVE CONCEPTS AND AXIOMS USED

A.4.0 Basic axioms and concepts In this section we present some axioms and
concepts described in the literature, pertaining to constructive mathemat-
ics in particular (INT, RUSS, and BISH). Definitions given in this section may
slightly differ from similar earlier definitions given for natural spaces, to con-
form to standard practice in INT.

A relatively short discussion of most of these axioms, and comparisons of
interrelative strength, can be found under the same names in [Waa2005].
More fundamental discussions on intuitionistic axioms are to be found in
[Vel1981], [Vel2008], [Vel2009], and [Vel2011]. More fundamental discus-
sions on a large number of constructive axioms (and comparisons of in-
terrelative strength) are to be found in the standard works [Bee1985] and
[Tro&vDal1988].

A.4.1 Constructive logic is intuitionistic logic The common practice in con-
structive mathematics is to use intuitionistic logic. We explain what we mean
by describing the meaning of our quantifiers and expressions involving them.
Before we continue, let us state that certain mathematical notions will be
taken as primitive , that is: hopefully understood but not defined in terms of
other notions. One of these notions is the notion of a sequence , for instance
a sequence of natural numbers.

We call 0, 1, 2, . . . a sequence of natural numbers. There are many other
such sequences of course, for instance the sequence of prime numbers
2, 3, 5, . . . The set of all sequences of natural numbers is often called NN.
In intuitionism the tradition is however to call this set σω, for reasons which
have hopefully become apparent in our previous narrative.

Cantor’s diagonal argument shows that we cannot produce all sequences of
natural numbers one after the other. This exhibits an important difference
between σω and N. For we do have a way to produce all natural numbers,
one after the other, even if we are never done with N as a whole. But to
produce just one element of σω is as much work as producing all of N.

Other primitive notions are those of a ‘set’, a ‘subset’ and an ‘element’ of a
subset, along with the notion of a ‘collection of subsets’. We write ∅ for the
empty subset.
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Primitive notions relating to our use of quantifiers are the notion of ‘method’
and ‘existence’. We say that a mathematical object such as a natural num-
ber, a sequence of natural numbers, or a subset with a certain property P
exists if and only if we have a method to construct it.
Then we write, for example: ∃α∈σω [P(α)] ( there is an α in σω with property
P). If P is a property applicable to sequences of natural numbers, then we
can form the subset {α∈σω | P(α)}. If P is a property applicable to natural
numbers and n is in N, then we write n=μs∈N [P(s) ] to mean that n is the
smallest natural number with property P.

We abbreviate ‘if and only if’ with ‘iff’.

We assume the reader is familiar with the logical symbols ∀ , ∃ , ∃ !, ∧ , ∨ , ¬
and →. We often use them to abbreviate otherwise lengthy statements.
Let P be a property applicable to the elements of a set or collection X.
‘∀∈X [P()]’ means: for all  in X we can prove P(). ‘∃∈X [P()]’ means:
there is an  in X such that P(), as explained above. ‘∃ !∈X [P()]’ means:
there is an  in X such that P() and for all y in X: if P(y) then y=.
If on the other hand P and Q are statements, then ‘P∧Q’ means: we can
prove both P and Q. ‘P∨Q’ means: we can choose either P or Q, and prove
the chosen statement. So in fact ‘P∨ Q’ is equal to: ‘∃s∈{0,1} [(s=0∧P)
or (s=1 ∧ Q)]’. ‘P→Q’ means: P implies Q (we can prove Q from P). Finally,
‘¬P’ means that we can prove a contradiction from P (and our axioms).

We have to distinguish between P and ¬¬P. Of course ¬¬P follows from
P, but in general the knowledge that ¬P is impossible does not supply us
with a proof of P. Similarly we distinguish between ¬ ∀∈X [P()] and
∃∈X [¬P()]. (There are situations in INT in which we can prove both
¬ ∀∈X [P()] and ¬ ∃∈X [¬P()].).

A.4.2 Functions are Cartesian subsets
Having taken the notion of ‘set’ and ‘subset’ as primitive, we define a func-
tion from an apartness space (V, #1) to another apartness space (W, #2) as
a subset of the cartesian product (V×W, #) (see def. 3.5.1) such that:

1. for all ∈V there is a y∈W such that (, y)∈ ƒ

2. for all , ∈V and y, z∈W: if (, y)∈ ƒ and (, z)∈ ƒ and y#2z then #1.

Then for any pair (, y)∈ ƒ we write: ƒ ()≡y or ƒ ()=y.

The constructive interpretation of the quantifiers ‘for all’ and ‘there is’ en-
sures in our eyes that this definition nicely captures the connotation of me-
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thodicity which the word ‘function’ carries. In this book we almost always
work with morphisms anyway, but the definition above is strictly speaking
necessary to underpin the theorems on representability of continuous func-
tions by morphisms.

A.4.3 Some intuitionistic definitions To define the relevant intuitionistic ax-
ioms of (continuous) choice we need a number of straightforward definitions,
which closely resemble our earlier definitions regarding natural spaces. The
reader should take the definitions below as intuitionistic parallels.

DEFINITION: (in INT) Let σω denote the universal spread of all infinite se-
quences of natural numbers (σω=NN). Write σω for the set of finite se-
quences of natural numbers (often written like this: σω=N∗). For α in σω we
write α(n) for the finite sequence α(0), . . . , α(n−1) formed by the first n val-
ues of α. Then α(n)∈σω, and vice versa σω={α(n) |α∈σω, n∈N}. A subset B
of σω is called decidable iff for all ∈σω we have a finite decision procedure
to determine whether ∈B or  6∈B. A subset B of σω is a bar on a subset A
of σω iff ∀α∈A∃n∈N [α(n)∈B ], and a thin bar iff ∀α∈A∃ !n∈N [α(n)∈B ]

Now let  be in σω , then  is a finite sequence of natural numbers. We
write g() for the length of this finite sequence. So if =0, . . . , n−1 then
g()=n. There is a sequence of length 0, namely the empty sequence

denoted by <� �> . For  < g() we then write  for the  th element of this finite
sequence. If =0, 1, . . . , g()−1 and b=b0, b1, . . . , bg(b)−1 are in σω then
we write ?b for the concatenation 0, 1, . . . , g()−1, b0, b1, . . . , bg(b)−1 of
 and b. We write  v b iff there is a c in σω such that b=?c, and we write
 v b iff in addition g(b)> g().

A function ƒ from σω to N is called a spread-function iff there is a function g

from σω to N such that for each α in σω: ∃ !n∈N [g(α(n))> 0] and moreover
for all n∈N : g(α(n))> 0 → ƒ (α)=g(α(n))−1.24 More generally a function ƒ

from σω to σω is called a spread-function iff there is a function g from σω
to σω such that for each α in σω and n∈N there is an m∈N such that:
ƒ (α)(n)=g(α(m)), and moreover g(α(n)) v g(α(n+1)). (END OF DEFINITION)

REMARK: Spread-functions from σω to σω correspond one-on-one to natural
morphisms from N to N . We have declined in this monograph to define nat-
ural ‘morphisms’ from σω to N, but this is easily remedied. (END OF REMARK)

24Notice that {∈σω |g()> 0} is a decidable thin bar. This shows that the concept of
spread-function is inherently the same as the concept of a decidable (thin) bar.
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A.4.4 Axioms of continuous choice in INT The fundamental intuitionistic ax-
iom of continuous choice AC11 can now be formulated as follows:

AC11 Let A be a subset of σω×σω such that:

(?) ∀α∈σω∃β∈σω [ (α, β)∈A ]

Then there is a spread-function γ from σω to σω such that for each α in σω:
(α,γ(α)) is in A. We say that γ fulfills (?).

We formulate four weaker versions of this axiom: AC10, CP, AC01, and AC00.
The last two are simple axioms of countable choice, whereas AC10 is still
an axiom of continuous choice, also known as ‘Brouwer’s principle for num-
bers’. AC10 implies the so-called continuity principle CP. We do not defend
the axioms here since they are broadly discussed in the literature (see e. g.
[Kle&Ves1965], [GiSwVe1981], [Vel1981] and [Tro&vDal1988]). We begin
with the weaker axioms dealing with continuous choice:

AC10 Let A be a subset of σω×N such that:

(??) ∀α∈σω∃n∈N [ (α, n)∈A ]

Then there is a spread-function γ from σω to N such that for each α in σω:
(α,γ(α)) is in A. We say that γ fulfills (??).

CP Let A be a subset of σω×N such that:

∀α∈σω∃n∈N [ (α, n)∈A ]

Then: ∀α∈σω∃n∈N∃m∈N∀β∈σω [α(m)=β(m)→ (β, n)∈A ].

A.4.5 Axioms of countable choice in BISH We present two simple axioms of
countable choice in decreasing order of strength:

AC01 Let A be a subset of N×σω such that:

(∗) ∀n∈N∃α∈σω [ (n,α)∈A ]

Then there is a function h from N to σω such that for each n∈N : (n, h(n)) is
in A. We say that h fulfills (∗).

AC00 Let A be a subset of N×N such that:

(∗∗) ∀n∈N∃m∈N [ (n,m)∈A ]

Then there is a function h from N to N such that for each n∈N : (n, h(n)) is
in A. We say that h fulfills (∗∗).



Constructive concepts and axioms used 162

A.4.6 Axioms of dependent choice in BISH Likewise we present two axioms of
dependent choice in decreasing order of strength. For an intuitionistic justi-
fication of these axioms we refer the reader to [Waa1996].

DC1 Let δ be in σω, and let A be a subset of σω. Suppose R is a subset of
A×A such that:

δ∈A ∧ ∀α∈A ∃β∈A [ (α, β)∈R ]

Then there is a sequence (γn)n∈N of elements of σω such that γ0=δ and for
each n∈N : (γn, γn+1) is in R.

DC0 Let s∈N , and let A be a subset of N. Suppose R is a subset of A×A
such that:

s∈A ∧ ∀n∈A ∃m∈A [ (n,m)∈R ]

Then there is an α in σω such that α(0)=s and for each n∈N : (α(n), α(n+1))
is in R.

A.4.7 Axiom of extensionality The axiom of extensionality states that we do
not distinguish between infinite sequences which are termwise identical,
even though they may have different descriptions/definitions.

Ext Let α, β∈σω such that ∀n∈N[α(n)=β(n)]. Then α=β.

This axiom is often adopted rather silently (like we do also). In RUSS, the
different algorithms describing infinite sequences play an important role, but
still one wishes to see infinite sequences themselves as equal when they are
termwise identical.

A.4.8 Bar induction, Brouwer’s Thesis and the Fan Theorem To phrase the
principle of Bar Induction for Decidable bars (BID) we need:

DEFINITION: A subset A of σω is called downwards inductive 25 iff for all  in
σω : ∀n∈N [?n∈A]→ ∈A. (END OF DEFINITION)

BID Let B be a decidable bar on σω. Suppose A is a downwards inductive
subset of σω such that B⊆A. Then the empty sequence <� �> (of length 0)
is in A.

25We must distinguish from the already defined notion ‘inductive’.
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REMARK: In classical mathematics BID can be derived from the principle of
the excluded middle. The above version of the bar theorem is therefore
classically true. In [Waa2005] BID is derived from BT (see 2.4.1) which also
holds both in CLASS and INT. (END OF REMARK)

One of the results following from BID is the axiom known as the fan theorem
FT. We need a preliminary definition.

DEFINITION: Let σ2 be the binary fan ({0,1}N). Write σ2 for {0,1}∗, the set
of finite sequences of elements of {0,1}. Then σ2={α(n) |α∈σ2 , n∈N}. A
subset B of σ2 is a bar on σ2 iff ∀α∈σ2 ∃n∈N [α(n)∈B ]. (END OF DEFINITION)

FT If B is a decidable bar on σ2 , then B contains a finite bar on σ2 (in other
words: then ∃n∈N∀α∈σ2 ∃m<n [α(m)∈B ]).

A.4.9 Basic axioms in RUSS: Church’s Thesis The basic axiom in RUSS is of
course Church’s Thesis: ‘every sequence of natural numbers is given by a
recursive rule’ (many results in RUSS already follow from the weaker state-
ment: ‘the set of partial functions from N to N is countable’). A partial re-
cursive function α from N to N will usually be denoted by something like ‘ϕe’
where the natural number e is the recursive index of α. This recursive index
is nothing but the encoding of the finite algorithm which for each n∈N tries
to compute α(n). There is a decidable subset (N,N) of N such that each e

in (N,N) is a properly formed recursive index of a partial recursive function
from N to N, and vice versa for each partial recursive function α from N to
N there is an e in (N,N) such that ∀n∈N [α(n) •= ϕe(n) ], where ‘ •=’ stands
for: ‘equal if one of the algorithms terminates, given the input’.

It turns out one can canonically encode each finite recursive computation
as a natural number, see [Kle1952]. This is the basis of Kleene’s decidable
T-predicate on triples of natural numbers (e, n, k), given by:

T(e, n, k) ⇐⇒ e is a recursive index and k is the canonical encoding of the
computation of ϕe(n).

If T(e, n, k), then the algorithm ϕe terminates on the input n. But we are
mostly interested in the result of the computation k , and in its length (the
number of canonical subcomputations leading to the result). Both can be
canonically derived from k of course, using recursive functions Outc and
Lgth. So if T(e, n, k), then ϕe(n)=Outc(k) and the length of the computation
k equals Lgth(k).
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In this terminology we formulate the axiom Church’s Thesis26 thus:

CT ∀α∈σω∃e∈ (N,N)∀n∈N [α(n)=ϕe(n) ]

If ∀n∈N [α(n)=ϕe(n)] for α∈σω and e∈ (N,N), then in particular we have:
∀n∈N∃k∈N [T(e, n, k)]. The set TOT={e∈ (N,N) |∀n∈N∃k∈N[T(e, n, k)]}
therefore plays an important role in RUSS.

The combination of CT with AC00 is equivalent to an axiom known as CT0,
which forms a connection between CT and choice axioms:

CT0 Let A be a subset of N×N such that:

∀n∈N∃m∈N [ (n,m)∈A ]

Then there is a recursive function h from N to N such that for each n∈N :
(n, h(n)) is in A.

From CT0 we can derive a more complex choice axiom CT01, which plays a
part in the defense of CT11 in [Waa2005]:

CT01 Let A,B be subsets of N×N, where B is decidable, such that:

∀n∈N [∃y∈N [(n, y)∈B]→ ∃m∈N [(n,m)∈A] ]

Then there is a partial recursive function h from N to N such that for each
n∈N : if ∃y∈N [(n, y)∈B] then h(n) is defined and (n, h(n)) is in A.

CT01 follows from CT0. CT01 is the first step to an even broader choice axiom
known as ‘Extended Church’s Thesis’ (ECT0), which is widely accepted in
RUSS. But the phrasing of ECT0 and its defense (at least in [Tro&vDal1988])
are in logical terms and do not appeal to the author. We present a simpler
version CT11 for which an intuitive defense is given in [Waa2005].27

CT11 Let A be a subset of N×N such that

∀n∈TOT∃m∈N [ (n,m)∈A ].

Then there is a partial recursive function h from N to N such that for all
n∈TOT we have: (n, h(n))∈A.

26Originally ‘Church’s Thesis’ stands for the idea that any ‘mechanically’ obtainable se-
quence must be computable by a Turing machine.

27We try to adhere to the principle that mathematics needs clear axioms which represent
our mathematical intuition (not merely serve mathematical convenience). Some technical
axioms however have practical advantages for comparison purposes.
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A.4.10 Markov’s Principle A second important axiom in RUSS is called Markov’s
Principle: ‘if it is impossible that a total recursive function α does not achieve
the value 1 for some n in N, then there is an n in N with α(n)=1’. Formally:

MP Let α be in σω such that ¬ ¬ ∃n∈N [α(n)=1 ]. Then ∃n∈N [α(n)=1 ].

In [Waa2005] a plea is given to consider adopting MP in intuitionism as well.
Joan Moschovakis ([Mos2012]) holds a similar view.

A.4.11 Axiom of induction We present the principle of induction as an axiom.

Ind Let A be a subset of N such that 0∈A and for all n∈N : n∈A implies
n+1∈A. Then A=N, that is: n∈A for all n∈N .

A.4.12 Axiom of decidable-bar descent for INT, RUSS and CLASS We phrase a
Lindelöf-type axiom which holds in CLASS, INT and RUSS.

DEFINITION: Let B and C be two bars on σω, then B descends from C iff for all
c in C there is a b in B such that b v c. (END OF DEFINITION)

BDD Every bar on σω descends from a decidable bar on σω.

The proof of BDD from BT is immediate (CLASS and INT), whereas the proof of
BDD from CT11 in RUSS is given in [Waa2005], using a result from [Ish1993].
In [Waa2005], BT is shown to be equivalent to the combination of BID and
BDD. BDD is easily seen to be equivalent to:

BDD∗ Every bar on σω descends from a decidable thin bar on σω.

A.4.13 More axioms More relevant axioms can be found in the literature, notably
[Tro&vDal1988], [Bee1985], [Ish2006] and [Vel2011]. In [Waa2005], apart
from the above some other interesting axioms and axiomatics relating to
constructive mathematics are discussed as well.



Additional remarks 166

A.5 ADDITIONAL REMARKS

A.5.0 Containment and refinement Notice that in the case of dots being ra-
tional intervals, the refinement relation can be defined completely in terms
of a natural containment relation ⊆ derived from the pre-apartness relation
as follows:  ⊆ b iff c#b implies c# for all c∈V. In many of our inter-
est spaces, a similar approach yields a decidable containment relation. But
in general this approach involves checking an infinite number of conditions,
which leaves the so-defined containment relation non-decidable and there-
fore unwieldy for practical purposes.

A.5.1 Classical treatment of equivalence The usual classical approach is to
work with equivalence classes as the resulting points (a real number usu-
ally is defined as the equivalence class of a Cauchy-sequence of rational
numbers). In practice this is cumbersome, since all computations on equiv-
alence classes require working with the representatives of these classes. It
is therefore more efficient to work with the original sequences and the origi-
nal apartness relation directly. For theorists who so desire, the translation to
equivalence classes is simple, since all definitions will respect the apartness-
induced equivalence relation. In topological terms our approach means a
both practical and foundational way of dealing with a quotient space of Baire
space with respect to a 10-equivalence relation.

A.5.2 Details of proving proposition 1.2.2 In the proof of proposition 1.2.2,
the isomorphisms g, h between (V ,T# ) and (W ,T#2 ) are � -morphisms. This
is without loss of generality, since by 1.1.6 we can always lift arbitrary iso-
morphisms g, h to � -isomorphisms g′, h′ between (V o,T#

o) and (W o,T#2
o),

where the latter is also basic-open trivially. Thus establishing the proposi-
tion for (V o,T#

o) with ƒ ′=h′◦g′, we can use the o -automorphism ƒ = id∗◦ ƒ ′ to
establish the proposition for (V ,T# ).

A.5.3 Lazy convergence and isolated points A main theme in defining nat-
ural spaces and morphisms is ‘lazy convergence’. Points may themselves
choose, so to say, when a next real step in the refinement takes place. How-
ever, if one is not careful this leads to some rather unexpected issues with
isolated points (points which as a one-point set are open in T# ). To avoid
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these issues, we have sharpened the definition of ‘trail space’ and ‘(in)finite
product’ given in the first edition of this monograph.

A.5.4 Spaces which cannot be represented as a natural space Our discus-
sion in 2.4.2 shows that the ‘space’ of all Baire morphisms cannot be repre-
sented as a natural space. This is a frequently occurring theme for function
spaces. It would seem to be highly relevant to study various ways in which
we can work with function spaces which do not allow a representation as a
natural space. It also seems highly worthwhile to find natural representa-
tions for various classes of function spaces. We give one example (already
discussed by Brouwer) in the examples’ section A.2.4 above.

One way of dealing with a function space F which cannot be represented
as a natural space, is to construct a natural space of which F forms a topo-
logical subspace. This is often not really satisfying, but still allows to use
the functions as ‘separably countable’ objects. But we leave this for further
research, and what has already been done in the constructive literature on
function spaces. The issue is discussed also in chapter zero of [Waa1996],
where some (most likely not the best) examples and results are given.

A.5.5 Definition of spreads and spraids In the definition (2.1.2) of ‘spread’ we
exact that each infinite ≺ -trail defines a point. This is primarily to obtain a
precise match with Brouwer’s intuitionistic spreads. Most things seem to
work fine without the condition, and we obtain the same inductive spraids
with or without. It is however quite instructive to see the effect of this con-
dition on the (in)finite-product definition. For example, if we take the simple
finite product ≤1σR (which represents R2, see def. 3.5.1) then the infinite
≺-trail (([0,2−n],©R)n∈N) does not define a point. So with the condition, the
simple (in)finite-product definition almost never yields a spread even when
its constituents are all spreads. Without the condition, the simple (in)finite-
product of spreads is again a spread, but now the problem is transferred to
the inductiveness of the spreads involved (again use ≤1σR).

For elegance we wish to retain the simple infinite-product for natural spaces
in general. This means that for spreads ((Vn,T#n ))n∈N we need the sharper fi-
nite products ι·≤nσ (V ,T# ) and infinite product n∈Nσ (Vn,T#n ) defined in 3.5.1.

Matching Brouwer’s spreads precisely is important to us so we adopt the
condition. The above is an illustration of how deeply linked most definitions
in this monograph are.
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A.5.6 Definition of inductive open covers from 3.1.0 The definition of point-
wise inductive open covers in 3.1.0 is trickier than one might expect at first
glance (and our first try in the previous edition was inadequate). The ap-
proach in 3.1.0 allows the requisite induction to be limited to a subspraid
(W ,T# ), which is far less restrictive than requiring induction on all of (V ,T# ).

A good counterexample to consider is given by the Kleene Tree Kbr. If we
put U ={[k] |k∈Kbr}, then we see that U is an open cover of Cantor space
in RUSS. But U is not an inductive open cover of Cantor space in RUSS, since
Kbr is not an inductive cover of C.

We do not delve into this definition since it is little used in this monograph,
but one should study pointwise inductive open covers in more detail. This
bears directly on the important question of how to ‘inductivize’ results from
[Bis&Bri1985] and [Bri&Vî̧t2006] to natural topology.

A.5.7 Star-finitary metrization in INT Our star-finitary metrization theorem in
4.0.8 is also intended as an example how intuitionistic results can be trans-
lated to our setting by inductivizing the definitions (as in chapter three).

However, the translation from [Waa1996] of the corresponding intuitionistic
star-finitary metrization theorem was complicated by the discovery that the
proof offered in [Waa1996] contains an error, specifically the proof of lemma
2.4.4. which corresponds to part of our Urysohn function lemma (E).

This error can be corrected by looking at (genetic) bars which represent the
condition A#B, as our proof here shows, but a straight translation was ren-
dered impossible. This is the main reason that our proof here is more in-
volved and longer than the proof in [Waa1996].
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A.6 BIBLIOGRAPHY AND FURTHER READING REFERENCES

A.6.0 Further reading, research and researchers The bibliography given be-
low contains the necessary research references for reading the monograph.
It is also intended as a quick (therefore quite incomplete) overview of cur-
rent research and researchers related to constructive topology. With current
internet access to scientific publications, one should have no difficulty in
finding other relevant research and researchers. Suggestions for improve-
ment of the bibliography are welcome, through the website of the author
(www.fwaaldijk.nl/mathematics.html , where his own few publications can
also be found online).
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